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Abstract 
The largely informal use of manufacturing information within design often results in such 
information not being utilised to its full potential.  This paper proposes an approach where 
data generated is collated and analysed using Data Mining methods for reuse in design.  This 
approach, in effect, seeks to mimic the type of knowledge experts accumulate, and embody 
this within a computational model. 

In order to demonstrate the approach the results of an example are presented.  A simple 
mechanical model has been computationally modelled, and aspects of the simulated dynamic 
behaviour of the mechanism have been recorded.  A production run has been replicated by 
generating 100 mechanism models, each with slightly different geometries which represent 
variations within manufacture.  The dynamic behaviour was then modelled for each in turn, 
replicating aspects of testing which could be carried out during manufacture. 

Data Mining methods were then used to investigate the resultant data, indicating which of the 
geometric entities most influenced dynamic behaviour and providing a predictive tool which, 
if given the geometry of a specific model, could estimate the likely dynamic behaviour.  Such 
models allow useful investigation of the manufacturing domain and provide a more formal 
means of passing manufacturing knowledge into design. 

Keywords : Knowledge Acquisition, Design Information Management, Design for 
Manufacture 

1. Introduction 
The iterative and collaborative nature of design requires information gathered in one area to 
be available for use in another, something that methods such as concurrent engineering take 
into account [1].  Within many practices a clear delineation between design and manufacture 
still exists, where boundaries may be physical as well as procedural [2] which influence the 
exchange of information.  Figure 1 shows an aggregated and condensed version of the design 
processes as put forward by experts such as Ullman [3] and Pahl and Beitz [4], and indicates 
where information from manufacturing data may be used within the design process.  This data 
may take the form of measurements recorded during manufacture or assembly and data 
recorded during testing.  At present the experiences and impact of these data and trends are 
fed back into design through mostly informal means, such as through some form of network, 
or occasionally more formally through devices such as review meetings. 
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Figure 1 Data Analysis within Design and Manufacture 

The thrust of this research work is that the emerging Data Mining (DM) methodologies and 
techniques present potential opportunities to formalise the collation and analysis of 
manufacturing data, and transform it into useful and useable design information.  DM is a 
methodology which allows data to be algorithmically interrogated, free of prior assumptions, 
to reveal novel or unexpected patterns.  The authors are currently undertaking research into 
using DM techniques to establish patterns and relationships within data describing the 
manufacture of industrial power generation gas turbines [5]. 

To illustrate some of the underlying principles, this paper presents a more general case, where 
the results of DM analysis of a computationally-generated linkage mechanism are used to 
illustrate and validate the approach.  The parameters defining the geometry of the mechanism 
were artificially varied, representing the type of measurements which may be taken during a 
typical manufacturing operation, and the simulated dynamic behaviour of the mechanism was 
recorded giving data representative of testing during manufacture and assembly.  DM is then 
used to unearth relationships between these data, indicating the effects of geometry on 
dynamic behaviour.  In this way it is possible to ‘design in’ greater control over critical 
aspects of the geometry and infer suitable geometric values to enhance the performance of the 
design. 

Such an approach is most useful in situations where the common approaches to modelling, 
physical experimentation and computational representations of physical systems, are either 
impractical or insufficient.  It is anticipated that the DM approach would most beneficially be 
used on data generated during the manufacturing process, thus being in effect an analogy of 
physical experimentation, but for the sake of convenience and simplicity the example 
presented in this paper will take data generated from a computational representation.  The 
actual generation of data will be described to indicate the type of data that is suitable for 
analysis, but it is the interrogation of this data that is of greatest significance. 
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2. Data mining 
The underlying motivation of the work presented here is to enable both designers and 
manufacturers to use Data Mining (DM) techniques on data generated within the 
manufacturing domain, thus allowing manufacturing data to be investigated with a degree of 
autonomy, reducing the degree of assumption and manual delineation of search necessary 
prior to analysis.  It is entirely possible that, free from the bias which directs search towards 
an area suspected or favoured by an individual analyst, more accurate and novel results may 
be found, This point is highlighted by Smyth [6] who states that the DM approach generates 
“..previously unsuspected structure and patterns in data.” 

The field of DM encompasses the collection and interrogation (modelling) of data and 
evaluation and deployment of the results [7].  DM has been deployed with great success in the 
financial and marketing arenas, such as by Landrover who improved the response from 
customers targeted during their marketing campaign from 2% to 85% [8]. 

Of the raft of algorithms available for modelling, the actual analysis of the data, two lend 
themselves in particular to this application, namely Decision Tree Induction (DTI) and 
Artificial Neural Networks (ANNs).  DTI [9] automatically generates decision trees which 
can classify single output variables into different ranges depending upon a series of logical 
tests of the input parameters.  This approach is transparent, where the influences of various 
parameters are indicated, and is easily implemented.  ANNs [10] deal well with noisy, 
incomplete data and allow for multiple output parameters within an individual model, 
addressing some of the shortcomings of the DTI approach.  ANNs suffer from a lack of 
transparency and the optimum architecture (layout) of the network is difficult to pre-
determine, a major concern as the data requirements for training ANNs increase dramatically 
with increases in network size. 

3. Mechanism problem 
The following example, whilst simple, indicates the implementation and scope of the 
approach and its deterministic nature allows the effects of contrived variations to be evaluated 
and their effects seen on the simulated performance.  In this example a simple mechanism was 
computationally modelled using the SWORDS constraint modeller [11].  This package allows 
for mechanisms to be constructed and manipulated to simulate a working cycle, whilst 
constraint rules ensure specific criteria are met during this cycle.  Initially developed for 
mechanism design, it has proved versatile and has been successfully used for a number of 
tasks including the modelling of wrist replacements [12]. 
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Figure 2 Screenshot of SWORDS Constraint Modeller 

A screenshot of the mechanism may be seen in Figure 2.  The left leg forms the crank of the 
mechanism, and when rotated through one revolution the dotted crescent indicates the path of 
the upper-most point of the assembly, ostensibly representing the working head of the 
packaging machine.  It is the characteristics of this path that primarily determine the 
operational success of the mechanism, and as such these were selected as the output metrics.  
These output metrics, together with the input data required to define the mechanism, are listed 
in Table 1. 

Table 1 Input and output parameters for simple linkage 

Input Label Outputs Label 

Crank length d1 Max/min head x-displacements px_max, px_min 

2nd leg length d2 Max/min head y-displacements py_max, py_min 

Crossbeam length d3 Maximum head velocity vel_max 

Cross-link lengths d2a, d2b Maximum head acceleration acc_max 

Crank pivot co-ordinates p1x, p1y   

2nd leg pivot co-ordinates  p2x,p2y   

The DM approach requires data from a series of exemplars (such as from each item in a 
production run) to be recorded.  In this example the input variables were randomly varied by 
+/- 5%, representing a rather generous geometric tolerance (thus mitigating computational 
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rounding errors).  One hundred sets of input data were generated in this way, and the 
SWORDS package was used to simulate models created from each of these 100 input 
datasets. 

3.1. Data mining of mechanism results 
In order to be able to act on information gleaned from DM models, it is vital that faith can be 
placed in their accuracy.  Validation of such models is one of DMs cornerstones, and of the 
various methods of validation that are commonly used, such as bootstrapping (investigated 
using ANNs in [13]) and the more widely-used cross-validation (CV) [14], the majority 
require that a certain portion of the available data is kept to one side to test the fully trained 
model.  It is not always apparent which method is the most suitable (certain limitations of CV 
were identified in [15]) and various approaches were used during modelling. 

The two methods of modelling previously described, DTI and ANNs, could each be used to 
address a different aspect of this problem.  The transparency of DTI is useful in determining 
the areas of the mechanism which are critical to obtaining a specified output, whilst ANNs 
can provide numerical output prediction. 

3.1.1. DTI approach 
In classification problems where the output is continuous, the delineation of suitable 
classification ranges can be informed by identifying and using as boundaries certain values of 
significance, for example maximum permissible velocities or displacements.  In this example 
the values used, outputs included, are arbitrary, where informed delineation is not possible.  
Therefore 5 equally divided ranges were constructed, ranges A to E with A representing the 
lowest velocity and E the highest.  This approach gives unequal numbers of instances in each 
range,.  This can be problematic for modelling, as certain areas of the output space will be 
sparsely populated, but is more representative of data which might be recorded in practise. 

 

Figure 3 Decision Tree Classifying Maximum Head Velocity 

Figure 3 shows a decision tree as generated by the DTI algorithm.  This example classifies the 
maximum head velocity, a parameter whose value has large ramifications upon the 
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performance (and safety) of the system.  This tree was created using the C4.5 algorithm [9], 
arguably the most common of DTI algorithms.  This was implemented within the WEKA 
Machine Learning Environment [14].   The nodes of the tree contain logical statements which, 
depending on whether the value of the input variable in question is lesser or greater than the 
specified value, determine which branch to proceed along.  This process continues until a leaf 
is reached, defining inside which of the 5 specified ranges the maximum velocity is likely to 
reside. 

In Figure 3 the first, root node states that if the value of d1, the length of the left, crank ‘leg’ 
of the mechanism is less than a specified boundary value search should proceed down the left 
branch.  It rapidly becomes apparent that this leg contains only leaves specifying ranges A, B 
and (in certain cases where d1 is only marginally lower than the previously noted boundary 
value) C.  The right branch emanating from the root node leads to leaves classifying into 
ranges C, D and E.  A further node on this right branch repeats the process, once again using 
d1 as the delineator, where large values result in classification into ranges D and E and 
smaller values into ranges C and D.  Such overwhelming evidence reveals that the maximum 
velocity of the head is influenced most greatly by changes in the crank length, where longer 
crank lengths result in larger maximum velocities.   It is this form of information that is of 
great use within design, and illustrates one of the strengths of DTI.  Also of significance is the 
absence of any variable defining the pivot points of the system within the tree, suggesting that 
these do not influence the maximum velocity of the system, which is in itself a useful piece of 
information [16].  It is possible to extract individual ‘rules’ from trees, the following example 
is taken from Figure 3, and for clarity is highlighted in white within that figure: 

IF 3.92 < d1 <= 3.96 AND d2 <= 9.78 THEN vel_max = B 

This rule states that if the parameter d1 lies between 3.92 and 3.96 and the parameter d2 is 
less than 9.78 then the value for vel_max is likely to reside in range A, corresponding to a low 
value.  These rules form a valuable set of heuristics for use within certain design situations 
such as initial configurations and scheming. 

Table 2 Percentage Accuracy of Various Validation Schemes 

Validation 
scheme 

Use of 
training 
set 

66% 
Split 

20-fold CV 10-fold CV 10-fold CV 
with 
Bagging 

10-fold CV 
with 
Boosting 

Accuracy % 97 61.7  50 46 57 56 

The accuracy of the model was evaluated using 6 methods in turn, the results of which are 
given in Table 2.  The first method simply passes the training data back through the tree to 
evaluate the percentage of correctly classified instances, giving a significantly optimistic view 
of how the tree might perform on new data.  The use of a 66% split, where one third of the 
data is kept to one side for validation, is more representative but is largely dependant on the 
makeup of the separated sets, where repeating this process with different instances can lead to 
considerably different results.  This is addressed in the CV methods, which divide the training 
data into separate notionally same-sized sets with the number of folds dictating how many 
sets to construct.  A model is created using the data from all but one of the sets, which is used 
for validation.  This is repeated until all of the sets have been used exactly once for validation, 
and the results are averaged to give an estimate of overall accuracy.  10-fold validation has 
been seen in several studies to be the most reliable [14] but there is little theoretical 
foundation suggesting the superiority of one method over another [14,15]. 
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The use of bagging [17] is similar to CV, where as series of essentially random subsets are 
created from the main dataset using bootstrapping [18], each with different makeups, and 
models are created and validated from each subdataset.  The overall error and indeed 
prediction can then be aggregated.   This can be effective as ‘if perturbing the learning set can 
cause significant changes in the predictor constructed, then bagging can improve accuracy’ 
[17], where bagging will give an indication of accuracy less subject to the instabilities of the 
modelling technique.  Boosting [19] is an iterative approach, where erroneously classified 
instances will be weighted in the subsequent model to ensure they receive priority in terms of 
accurate classification.  This process continues for a preset number of cycles, whereupon an 
aggregate prediction is taken, with the more accurate models receiving higher seeding.  This 
technique is prone to overfitting [20], where the instances are learnt by rote, rather than the 
underlying pattern, and it is difficult to ascertain the required number of iterations [19]. 

3.1.2. ANN approach 
A feed-forward network with a single hidden layer was selected, extending the possibility of 
the later use of one of a raft of proposed rule extraction algorithms such as the works 
surveyed in [21].  Succinctness prevents much detail of such networks being discussed here, 
for more information the reader is directed to [22].  Whilst robust and capable of dealing well 
with noisy (error-strewn) data, ANNs suffer from a lack of transparency and do not scale well 
– the computational expense of training a network (adjusting the internal parameters to fit the 
required output) and the volume of training data required increases massively with small 
increases in network size, the so-called ‘curse of dimensionality’.  The authors anticipate that 
the requirement for larger datasets will be most problematic within the engineering domain.  
The parallel use of DTI techniques (and to a lesser extent the promise of rule extraction) 
address the issue of transparency, and there are measures that can be taken to deal with 
network complexity.  Principle Component  Analysis (as discussed in [23]) can be used to 
reduce the dimensionality of data, thereby reducing network complexity.  This approach is 
widely used in conjunction with ANNs (for example in [24]), and indeed a PCA function 
forms part of the MATLAB ANN toolbox, the environment used in this study [23].  Whilst 
sufficient network complexity is required to ensure the underlying pattern of the data is  
modelled, efforts can be made to ensure the network does not become excessively large.  In 
many cases Simulated Evolution [25], a form of directed random search akin to Darwinian 
Evolution, has been successfully used to iteratively deduce the optimum network architecture 
[26,27] and network parameters [28].  This approach is will be introduced in later work where 
more complex domains are modelled and network architecture becomes more critical, 
however in this example manual optimisation was used. 

The specific instances that are selected for training and validation influence the success of 
modelling. In [13] the uses of bootstrapping in dataset selection for use in feed-forward ANNs 
are discussed.  Whilst their work focuses on extracting representative datasets from large 
databases, the use of bootstrap resampling accounts for and mitigates the detrimental 
influence of  erroneous instances, which are not encountered in this example but will become 
important in practical applications.  The work in [29] also considers the composition of 
datasets and highlights the necessity of boundary samples within the training data, where 
examples covering the extremes of each solution space are included.  This situation is 
extremely difficult to engineer, but by using bootstrapping it is possible to trial different 
dataset compositions and select the most accurate – a series of networks are trained using the 
bootstrap samples, and the network with the highest validation accuracy can be selected for 
use. 
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The developed network utilised 9 nodes in the input layer (the Cartesian components of both 
pivot points and the five link lengths) and 6 in the output (the Cartesian components of 
minimum and maximum displacement and the maximum velocity and acceleration).  The 
number of nodes in the hidden layer was varied, 3 runs  were completed with 4, 5 and 6 nodes 
in this layer.  The computationally quick Levenburg-Marquardt algorithm [30] was used for 
training as numerous bootstrap iterations would require processing. 

A linear regression between predicted and achieved network output was used to provide a 
metric of the network accuracy, a standard Matlab post-analysis function [23], although other 
packages allow for the use of alternate measures of correlation.  This function returns a 
correlation value indicating the level of agreement between the predicted and desired outputs, 
ranging from 0 (no correlation) to 1 (complete agreement).  Table 3 shows the highest 
correlation coefficients for a series of 3 runs with different numbers of hidden nodes in the 
output layer.  The 6 individual correlation coefficients correspond to the 6 outputs, and whilst 
a higher coefficient might have been noted on another network within the sample these were 
recorded from the network with the greatest summed coefficient. 

Table 3 Correlation Coefficients for ANN Output 

No of 
Nodes  

Summed 
r-value 

Average 
r-value 

R1 R2 R3 R4 R5 R6 

6 5.3732 0.8955 0.83481 0.8671 0.77121 0.91288 0.86301 0.84536 
5 5.312 0.8853 0.89949 0.89444 0.82829 0.86127 0.91398 0.91453 
4 5.2614 0.8769 0.90264 0.86003 0.88115 0.84049 0.89119 0.8859 

It can be seen that the fit is good, as the individual correlation values are approaching 1, 
although there appears to be some drop-off in the summed correlation coefficient with a 
reduction in the number of hidden layer nodes.  This would suggest that a larger number of 
hidden layer nodes would result in a more accurate network, although must be balanced 
against a tendency for over-fitting, where the network records the individual instances, errors 
included.  The use of a small a network as possible, whilst ensuring integrity, generally avoids 
this problem and also reduces computational overheads. 

3.2. Discussion of results an developments of DM 
The predictive models created as part of the DM methodology provide, once trained, useful 
tools to estimate the likely performance of a system given information regarding its early 
characteristics. With some thought, these models can be used in a greater capacity, to indicate 
which of these early characteristics most influence the performance and to give some idea 
whether these characteristics should be muted or amplified. 

In the mechanism example described previously, it was noted that the DTI model for 
predicting maximum head velocity revealed within its structure that longer crank lengths act 
to increase this maximum velocity.  Whilst perhaps easily deduced by other methods, this 
indicates the type of information it is possible to extract from a DTI model.  The parallel use 
of ANNs allow for the much more granular prediction of maximum velocity given the 
geometric properties of the system, where a numeric output replaces the ranges of the DTI 
approach.  It is also possible to extract rules, similar to those generated by the DTI approach, 
from trained ANNs.  This will be attempted in later work, along with a sensitivity analysis of 
the network, where the effects of perturbations in the input parameters are traced through to 
the outputs, indicating the degree of influence each input has on the output [31].  To ensure 
the approach is applicable to actual engineering problems, this approach is being concurrently 
developed on data obtained during the manufacture of gas turbine engines [5]. 
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4. Conclusions  
Applying DM methods to manufacturing data has the potential to reveal useful information 
for designers.  The complementary parallel use of DTI and ANN techniques have provided 
both a method for inferring parameters critical to, or highly influential of, system behaviour 
and also a predictive tool for determining likely system behaviour given specified conditions.  
In this paper these techniques have been trialled and thus validated on a deterministic model, 
and seen to provide information useful in understanding and estimating the likely 
performance of that model with good levels of accuracy.  The rules that are generated, 
although complex, show how the approach can provide the ‘unsuspected patterns’ referred to 
with respect to the DM process, and can thus be used to potentially support the design and 
manufacturing processes. 
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