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Abstract

Modularity is a critical determination for effective product architecture.  We present here a
computational approach that implements the dominant flow and branching flow heuristics
developed for subjectively partitioning a functional diagram into modules.  We partition by
representing the flow connectivity, and compute the matrix that contains only the functions
that are connected by a particular flow.  That becomes a candidate for a dominant flow
heuristic.
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1 Introduction

Determining product architecture is one of the key activities of any industrial product
development activity, and can substantially simplify the delivery of product derivatives and
updates, thereby reducing time to market.  The goal is to define the product architecture as a
working set of sub-systems, properly partitioned for maximum value – complete with robust
interfaces capable of the variety necessary to support multiple product variants and their
evolution over time.  Every product line has a product architecture, but whether the
architecture is well planned for the supported markets, supply and delivery chains, and the
development process is not so clear.  Often an argument presented against modular design is
the increase in cost and size that can occur.  However, focusing on a product’s part cost will
not maximize value in the long term, especially when considering ability to offer multiple
product variants.  Also, a modular design need not be bulky if designed well; laptop PCs
testify to this fact.

The ease with which a new core technology can be introduced into a product line as a
revolutionary or evolutionary change is directly a function of the product architecture.  The
ease of product development depends upon how the systems were designed to evolve as a
portfolio of products. A well-defined architecture permits rapid incorporation of new
technologies, styling changes, or size and capacity changes with trends.  Subsets of the
product need only be changed, decreasing development cycles.  A poorly understood
architecture back-propagates design changes throughout the product forcing extensive efforts
and delays.  This is compounded into changes the production, distribution, sales and service
functions, further degrading the customer’s experience and extending delays.

This is not to say businesses do not manage their product portfolios.  Product derivatives are
often explored with business cases and user interviews and the like.  Pipeline management
tools are used to select a proper mix of projects on risk-value charts.  Such portfolio
management tools, however, remain distinct and separate from the technical decision making



on modularity, interfaces, capacities and size ranges of subsystems, and upgradability.  Poor
technical architectural decisions cause severe problems, often attributed to other causes.

[1] noted the most often cited cause of product failures was inadequate detailed market
studies, though quite interestingly, the same surveys showed that preliminary assessments of
the markets had been done.  In other words, the marketing plans were done, but the
fundamental detailed systems architecture was not compared against the market. [2] also
reported a study demonstrating the disconnect between business strategy and daily operations
of new product development.  Their surveys showed that engineers doing the product
development often do not understand how to leverage a company’s available technologies
into their projects, and that strategists often make misguided decisions on what to develop.
Again, this is a demonstration of poor systems architecting – failures to understand how to
evolve a product line to adopt new technologies and failures to understand how to match
evolving customer requirements with the product line strategic plans.  Clausing’s 10 cash
drains [3] of new product development include technology push, disregard of the customer,
and the eureka concept, which are all failures due to no real portfolio architecting being done.

These failures have many causes.  But the fundamental cause we see is an incorrect focus on
purely technical design issues to meet the communicated product requirements when forming
the system architecture.  The result is products that, when technically when examined alone
and not against the future evolving competition or the future evolving market, function well as
an engineered system with the given components.  The problem is they just don’t stack up in
the evolved market against competitive technology, the architecture was too rigid to
accommodate necessary changes to keep pace.

A successful way that many industries have exploited to offer this needed variety while
reducing the need for resources is to launch product families based on a common platform.
To do this effectively, a well determined product architecture is required – a means to
partition the product functionality and systems into separate and distinct modules.  Yet, few
computational approaches exist to help in this endeavor [4].  In this paper, we develop and
demonstrate a computational structure to calculate a partitioning basis for a function structure
that is consistent with modularization rules, and maximizes a partitioning metric.

1.1 Related work

Most related to the work here are efforts done by researchers using the design structure matrix
(DSM) technique.  [5] and [6] have analyzed the sequence of and the technical relationships
among many design tasks in complex design projects in order to identify design parameter
groupings that must be solved iteratively.  [7] focus on using decomposition to structure tasks
and parameters in the detail design stage.  [8] also use binary interactions represented in a
digraph to develop physical design layouts.  [9] try to use the DSM for product
decompositions to identify reasonable modules.  [10] also use DSM techniques to modularize
product architectures.  All these techniques build on Steward’s design structure matrix [5] and
Warfield’s early article on binary matrices in system modeling [11].

1.2 Background – EML Structures and Modularization Rules

In order to combine the concept of modularization metrics with the concept of function
structures, more modeling structure than simple functions are required.  Functions in the
structure must be equipped with added variables, and further mathematics to combine these
individual values into grouped aggregates.  This paper will use a formal and very generic
modeling language that was posed by [12].  This modeling language – in the following also
referred to as the Element Modeling Language (EML) – is based on system-theoretic



fundamentals and is made of only a few formal components that can be adapted flexibly.  The
basis of the formal modeling language is the system definition as depicted in Figure 1.  The
system definition is structured into the following four statements: (1) A system consists of
elements, (2) the elements have attributes (properties and functions), (3) elements are
interacting by means of relations and (4) an element can be a system.  From this basic
definition, the components of the modeling language (formal components) can be derived
[12], [13].

Modularization rules were first proposed by Stone [14] and further developed by [15] and
[16].  The dominant will be analytically computed in this work. The dominant flow rule
examines each non-branching flow of a function structure and groups the sub-functions the
flow travels through until it exits the system or is transformed into another flow. The
branching flow rule first requires an identification of flows that split into parallel branches.
Each branch of the flow defines a potential module.
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Figure 1. System Definition and Formal Components of EML (Igenbergs, 1993)

2 Matrix representation

This section introduces a system of binary and non-binary matrices that is capable of
unequivocally representing an EML structure.  First, the binary square Element-Element-
Matrix (EEM) captures all general connections between two elements.  The EEM does not
take into account by how many flows two elements are connected.  It simply notices that there
is some sort of connection between two elements. This EEM is defined as follows:

( )


 ≠

== × otherwise. 0

nm and linked if 1
  where,ji mnamnaEEM (1)

The i rows and j columns represent all elements i = j from an EML-structure.  For example, a
mark or “1” in row 2, column 1 means that element 2 is connected through some at this point
unknown number of flows with element 1 (element two provides information to element one
– in other words, the arrowhead is at element one).

The binary Element-Relation-Matrix (ERM) unequivocally identifies the number of flows by
which two elements are connected.  To translate an EML-structure in a reasonable way into a
system of matrices all the relations need to be numbered, whereby a branching flow is
counted only as one relation.  The i rows of the ERM represent the i elements and the k
columns the k numbered relations from an EML-structure.  Hence, the ERM can be stated as:
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Since the ERM matrix does neither capture the input nor the output flows through the system,
two additional transposed vectors, which will provide this information, are introduced.  The k
components of these vectors equal exactly the total number of relations k within the EML-
structure.  Thus, the input vector is stated as
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and the output vector is defined as:

( )




==
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The ERM together with the transposed input and output vectors does not provide information
about which flow types connect two elements; rather it shows by how many flows two
elements are connected.  The next translation step clearly identifies the flow type of each
numbered relation.  The Relationtype-Relation-Matrix (RRM) identifies the flow types and
consists of l rows, representing all l occurring flow types within an EML-structure, and of k
columns, representing the total number k of relations within an EML-structure.

( )


== × otherwise. 0

linked if 1
  where,kl mnmn ccRRM (6)

Since each relation consists only of one flow type, the RRM is subject to
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Lastly, the non-binary Element-Property-Matrix (EPM) introduces a representation of
element properties or respectively metrics is.  The EPM exhibits values of metrics or any
other defined characteristics of an element:

( ) oimn ×∇=EPM (8)

Figure 2 summarizes the entire system of matrices as a representation, and its isomorphic
relation to an EML-structure (which recall is a function structure equipped with added
variables).
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Figure 2. Matrix Modularization System

3 Algorithms

This section will describe the dominant flow partitioning algorithm for the Matrix
Modularization System (MMS) which is based on the modularization heuristic [14]. For a
detailed description of the branching flow algorithm the authors refer to [17]. Then module
indices will be introduced as fulfilment-goodness indicators for the prior defined metrics.
They will later be used for trade-off studies between different modular architecture
candidates.

3.1 Generating Candidate Modules – Dominant Flow Algorithm

The dominant flow rule examines each non-branching flow of an EML-structure and groups
the sub-functions that the flow travels through until it exits the system or is transformed into
another flow.  The identified set of sub-functions defines a module that deals with the flow
traced through the system.  The following algorithms allows the precise identification of such
dominant flow modules within MMS.

Step 1.Since this section is dealing with non-ranked flow algorithms, the following procedure
must be applied to every flow within a MMS. Start by selecting the first row from the RRM,
which represents one of the flows.  This selected row is called the filter vector k filter,v

� . Note

that it sometimes makes sense to trace several flows, when considering grouping, for
example, all material or liquid flows together in one module.  In this case, the filter vector

filterv
�  is constructed by summing up all the desired rows to an overall filter vector:
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∈∧=∀+++=− vvvv (9)



Step 2. Before continuing, one needs to check whether the dominant flow rule is
applicable to the selected flow, depending upon whether a flow is non-branching.  The check
is done by calculating the vector k ERM), (Columns∑v

�
 as follows:
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

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
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


==⋅ ∑
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1

  where, k elements, allk ERM), (Columnsk elements, all �
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vvvERMT (10)

Thereby, the vector k ERM), (Columns∑v
�

 contains the sum of each column 1…k in ERM.  With this,

one needs to check which sum-components of k ERM), (Columns∑v
�

 are caused by the selected filter

vector k filter,v
� .  Therefore, the purged column vector k ERM), (Columns purged ∑v

�
 is calculated by using

Boolean multiplication as follows:

k ERM), (Columnsk filter,k ERM), (Columns purged ∑∑ ⊗= vvv
��� (11)

Once this is done, one only needs to check the remaining sum-components sck of
k ERM), (Columns purged ∑v

�
 according to inequality (3b), which in this case can be restated as:
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the dominant flow algorithm is not applicable on the selected (branching) flow.  On the other
hand, if the sum-components sck of the vector satisfy inequality (3a), which in this case can be
stated as

( ){ } flows, branching-nonfor ,,12 knnscn �∈∧≤ (14)

then the dominant flow rule can be applied on the selected flow and one can continue with
Step 3.

Step 3.Here one identifies all elements in the EML-structure which are affected by the
selected filter vector.  By carrying out the operation:
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using Boolean multiplication and addition, one obtains as result the element vector elementsv
� .

This vector contains all elements which are influenced by the chosen filter option.  Note that
the vector elementsv

�  does not provide information whether all identified elements are connected
through (only) one or several separated flows.  This is examined in Step 5.

Step 4.This step purges the EEM of entries that are not relevant for further considerations.
First rows and columns of the Element-Element-Matrix (EEM) are summed up as follows:
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whether there is really a connection between two elements as follows:  If
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is true, then a connection exists and the entry in the EEM is correct, otherwise it is wrong and
amn is set to 0.

Next, find all n = 1 … j where 1
1

>∑
=

i

m
mna . For these columns n, consider each of the indices m

for amn=1 and continue as follows:  Take the ERM and verify for each m according to
equation (17) whether there is really a connection between two elements. If (17) is true a
connection exists and the entry in the EEM is correct, otherwise amn is set equal 0.

Step 5.Once the EEM is purged, the rationalizing procedure (adapted from [11] and [12])
presented in this step allows determination of how many separate dominant flow modules are
extractable from a given EML-structure.

We define the top-level elements T:={ti} as the rows of EEM that are filled only with zeros.
The elements represented by the top-level are the last elements that are part of the respective
dominant flow searched.  We define the bottom-level elements B:={bj} as the columns of
EEM that are filled only with zeros.  The elements represented by the bottom-level are the
first elements that are part of the respective dominant flow searched.

An element is called isolated { }ji b t :  I ==  if both the sth row (i=s) and the sth column (j=s) are

only filled with zeros.  An isolated element can be understood as the trivial solution of the
dominant flow algorithm.  It’s simply only one element with (at least) one input and/or output
that was chosen by the filter vector.  The solution vector for one isolated element equals to:
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If we define for a given flow l (filter vector) the # of isolated elements, which are extractable
from an EML-structure as s, the solution space of all isolated elements can be stated as:

[ ] isSSSS DFI
sl

DFI
s

DFI ≤∧= ,
,

,
,1

, ;;� (19)

These isolated elements have to be deleted from the EEM.

The next step identifies the (separate) dominant flow modules represented by the EEM.
Since the purged EEM consists of only regular rows and columns (they contains only a single
1), the general procedure for forming each dominant flow will be to eliminate such regular
rows and columns from EEM, while simultaneously making additions to the element
structure that represents each dominant flow.

To extract a dominant flow, one has to investigate the bottom-level elements bj of EEM
successively.  This is done by taking the first bottom-level element bj* and reconstructing its
connection to the successor as follows:  Suppose first, that there is at least one regular row,



row i=j*, and its lone 1 shows subordination to column j.  Form a new column vector for the
jth column as follows:  The new column vector is

ijj CCC ⋅=*  (20)

where Cj is the old column vector for the jth column and iC  is the complement of Ci.  Insert
the new column vector in the matrix where column j was.  (In the case that there is no column
i, let jj CC =* .)  Delete the ith row from the matrix and delete any row or column that is filled

with zeros.  Place the element i on the forming EML-structure and connect it to the bottom-
level element bj.  If the element i is a top-level element ti then a module is identified and the
procedure can be repeated for the next bottom-level element.  If the element i is not a top-
level element continue with the elimination of the (next) row i*=j.  Hence, the solution vector
for one dominant flow module can be stated as follows:
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

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
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and the index u denotes the sequence-number of an element within a dominant flow module.
If we define for a given flow l (filter vector) the number of dominant flow modules which are
extractable from an EML-structure as t, then the solution space of all dominant flow modules
can be stated as:

[ ]DF
tl

DF
t

DF SSSS ,,1 ;;�= (22)

Hence, the dominant flow overall solution space SSDF consists of the following partial
solutions:
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4 Sorting Modules

Customer preferences present an opportunity for application of the algorithm above.  One can
map the customer needs to the flows that provide them, and thereby prioritize which flows to
modularize first.  That means, that elements (functions), which were included e.g. in the
module(s) for the highest ranked flow cannot be part of a module for lower-ranked flows, etc.

Once a flow ranking is established, the solution space for the product architecture is
partitioned and reduced.  This is done by first applying the dominant flow algorithm to the
most important flow on the given EML-structure.  Thereby elements, which were included
e.g. in the module(s) for the highest ranked flow cannot be part of a module for lower-ranked
flows, etc.  This can be done iteratively, with subsequent algorithm applications applied to the
remaining un-modularized product functions, until a comprehensive modularization is
completed.  Table 1 shows rankings for the function structure of a Versapak Cordless Drill
found in [17] and [18].  Notice the most important flow, the batteries which power the drill, is
modularized first, followed by the bit flows, followed by the electrical flow.  The resulting
modules are consistent with the actual Versapak product architecture.



Table 1:  Modules defined by iterative application of the algorithm to a cordless drill

Module Flow Functions
Module 1 Battery flow Register battery,

transmit electricity,
unregister battery

Module 2 Bit Flow Register bit, secure
bit, transmit power

Module 3 Electrical Flow Input signal, permit
switch, switch power

Module 4 Torque Flow Convert electricity to
torque, transform
torque speed, limit
torque

5 Conclusion and Outlook

A more advanced method of applying the ranking algorithms would be to rank the flows in
different ways in order to establish different partitionings of the same product architecture.
Such architectures could later be compared against each other in order to find the one, which
best fits the given customer requirements.  This means that, for example, customers could first
rank the flows based on their specific needs and then according to specific objectives, which
should be satisfied by the product-to-be.  For example, such a ranking could mainly focus on
user-functions or on reliability.  In order to enable a comparison and a tradeoff between those
different partitionings, one needs module metrics, which can be used as an underlying
decision basis.

In this paper, we presented a computational approach that implements the dominant flow and
branching flow heuristics developed for subjectively partitioning a functional diagram into
modules.  We partitioned by representing the flow connectivity, and computed the matrix that
contained only functions that were connected by a particular flow.  That became a candidate
for a dominant flow heuristic.
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