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Abstract 
Globalisation, market saturation and fragmentation, and rapid innovation are redefining the 
way that many companies are doing business. Designing configurable products families 
provides efficient and effective means to realise the product variety that satisfies the market 
demands. However, the development of configurable products increases the complexity of the 
design process. One way to reduce this complexity is to formalise the configurable product 
families and their design process. In this paper, fuzzy set theory was applied to deal with the 
configuration design problem. This study proposes a multiple-fuzzy models approach that 
supports the development of a configurable product family throughout the design process. 
The multiple-fuzzy models are the following: requirement-function model, fuzzy functional 
network, function-physical solution model and constraint-physical solution model. The fuzzy 
functional network maps the relations between the product functions. Having the multiple 
fuzzy models, the properties of the fuzzy relationships and their corresponding operations, 
final valid product configurations can be generated. An example illustrates the proposed 
approach.  
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1 Introduction 
Today’s companies are confronted with new challenges from the market. Globalisation, 
market saturation and fragmentation, and rapid innovation are redefining the way that many 
companies are doing business. The new challenge for the companies is to produce as much 
product variety for the marketplace as possible with as little variety between products as 
possible. The dynamic customer needs demand a quick response from the companies. 
Companies that can provide customisation and increased product variety improve customer 
satisfaction and enjoy significant competitive advantage of those that cannot [1].  

Designing products families provides an efficient and effective means to realise the product 
variety that satisfies the market needs. A product family is a group of related products that 
shares a set of common features. Configurable products represent a special class of product 
families and are the result of the configuration process [2]. The configurable products are the 
products, which can be selected from a set of components using a set of constraints so that the 
customer requirements are fulfilled [3] 
The configuration is a process, which based on a configuration model, generates a set of 
possible product configurations and is characterized by the configuration task. Given a set of 
components, the configuration task consists in finding a set of complete and valid product 
configurations [4]. Theoretically, the number of product configurations can be unlimited. To 
validate these product configurations, a set of constraints and requirements is defined at the 
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beginning of the process. Some systems for the computer-aided development of product 
configurations have been developed as for example in [5]. 
Working with a large number of product variants proves to be difficult. The development of 
configurable products increases the complexity of the design process. One way to reduce this 
complexity is to formalise the configurable product families and their design process. 

In this research, fuzzy set theory was applied to deal the configuration design problem. 
The fuzzy set approach introduced by Zadeh [6] is particularly suitable for handling imprecise 
information by providing a set of solutions with different degrees of preference [7]. Bahrami 
& Dagli proposed a fuzzy associative memory (FAM) paradigm in order to map fuzzy 
functional requirements to a crisp design [8]. Feng developed a methodology of fuzzy 
mapping of requirements onto functions and fuzzy mapping of functions to features in detail 
design [9]. Mutel & Ostrosi used manufacturing features and fuzziness in order to configure 
manufacturing cells [10]. Zhang proposed a fuzzy-set-based approach for representation and 
optimisation of design objects using the concept of the fuzzy shape. An evolutionary 
computation is used here to obtain fuzzy solutions to the fuzzy shape optimisation problem 
[6]. To develop new products that can satisfy the consumer’s physical and psychological 
requirements, Hsiao proposed a semantic and shape grammar based approach using fuzzy 
operations [11].  
This paper proposes a multiple-fuzzy models approach that supports the development of a 
configurable product family throughout the design process. The multiple-fuzzy models are the 
following: requirement-function model, fuzzy functional network, function-physical solution 
model and physical solution-constraints model. The fuzzy functional network maps the 
relations between the product functions. The final product configuration is obtained by 
associating the fuzzy functional network model to the other fuzzy models.  
In the second section of the paper the multiple fuzzy models are defined and presented. They 
represent the core of our configuration model. Having the multiple fuzzy models, the 
properties of the fuzzy relationships and their corresponding operations, final valid product 
configurations can be generated. An example illustrates the proposed approach.  
Finally, the conclusions and the perspectives are presented.  

2 Configuration approach based on multiple fuzzy models  
In this research we propose an approach based on the fuzzy set theory to deal with the 
configurable product family design. The configuration design is a process that generates a set 
of possible product configurations. Also this process is characterised by many degrees of 
freedom. Fuzzy models are integrated in the configuration design to deal with this 
uncertainty. Our approach consists in the followings stages: 

• Building the requirement-function model 

• Building the functional network model 

• Building the function-physical solution model 

• Building the physical solution-constraint model 
The chart depicted in figure 1 shows the architecture of this approach. A set of relational 
databases, which contain all the data needed for the configuration process, is used to build the 
corresponding fuzzy models. The fuzzy models define a set of fuzzy relationships used to 
configure a product family. 
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Figure 1. The multiple fuzzy structure platform 

2.1 Building the requirement-function model 
The design problem starts by specifying the set of users’ requirements and the set of product 
functions. Many degrees of freedom exist in the statements describing the design 
specifications. The fuzzy users’ requirements model is developed to deal with this problem.  

The requirement-function model is carried out in two stages. In the first stage, we define the 
fuzzy relationship between the requirements and the functions. In the second stage, 
considering the user’s requirements and using the fuzzy operators, the degrees of satisfaction 
of each function are inferred. 

Stage 1: Definition of Requirement-Function Fuzzy Relationship. Linguistic statements 
enable both users and designers to define the degree of importance for each requirement and 
product function. For example a chair “more” or “less” comfortable can be accomplished in 
different degrees by each product function. 

The uncertainty of the statements means the existence of a fuzzy relationship 1
~R  between the 

set of users’ requirements R  and the set of product functions F . This fuzzy relationship, 
noted 1

~R , is a subset of the Cartesian product FR ×  with the membership function 
[ ]1,0

1R ∈µ  and it can be noted: njFfmiRrfr jiji LL ,2,1,;,2,1 ,~
1 =∈=∈R . The 

relation is represented by a sagittal diagram (figure 2.a). The nodes of the diagram represent 
the elements of the set R and the set F. 

When related universes, in our case R and F, are finite [12], the fuzzy relation 1
~R on R×F can 

be represented as a membership matrix [ ]1R , whose generic term [ ] ijR  1 is ( ) ijR afr   ,1 =µ , 
, nj, mi 1   ;1  == . 

Let us consider the configuration design of a chair family. The users’ requirements and the 
main functions of the chair are listed respectively in table 1 and in table 2. It can be seen that 
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the requirements have different nature. Two different categories of requirements can be 
considered: quantitative requirements and qualitative requirements. The first category refers 
to physical requirements, as for example the size and the weight, and to economical 
requirements, as for example the cost. The second category refers to the types of chairs and to 
the different criteria of evaluation (comfortability, durability…etc.).  

Table 1. The users’ requirements        Table 2.  The main functions of chair 

 
 
 
 
 
 
 
 
 

The membership matrix representing the requirement–function fuzzy relationship is 
illustrated in figure 2b. 
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Figure 2. a) Sagittal diagram; b) Requirement-function membership matrix 

r1 Size 
I 

r2 Weight Quantitative 
requirements 

II r3 Cost 
r4 Office 
r5 Classroom 
r6 Home 

III 

r7 Bar 
r8 Comfortable
r9 Practical 
r10 Durable 
r11 Distinctive 
r12 Soft 
r13 Stable 

Qualitative 
requirements 

IV 

r14 Elegant 

f1 
support the lower-body weight of  
a person in a sitting position 

f2 
support the back of a person in  
a sitting position 

f3 
support the arms of a person in  
a sitting position 

f4 
offer movement space for the legs of 
a person in a sitting position 
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Stage 2. Users’ requirements mapping onto functions. The goal of this stage is to map the 
requirements of one specific user onto product functions.  
Mathematically, this means to induce the fuzzy function set F from the fuzzy requirement set 
R through the fuzzy relationship 1

~R  

RRF ~
1o=           (1) 

The composition of R through 1
~R  [12] can be written as  

( ) ( ) ( )[ ] FfRrfrrf RRrRRF ∈∀∈∀==   ,    ,,,minmax 
11

~~ µµµµ o
      (2) 

Let us consider our example. The set of requirements of one specific user is given by the 
requirement vector. For instance, the user prefers rather an office chair. So the requirement r4 

takes the value µR(r4) = 0,8. In the same manner, the other values are determined for each 
requirement represented in the table 1.  

( )[ ] [ ]  003,08,009,000008,03,005,0                              
14   13    12    11  10    9     8  7   6    5    4      3      2       1      .            

=r
NotRequiremen

Rµ
      (3) 

In this case, the fuzzy function set F (j=1,4) is induced by the composition of the fuzzy 
requirement set R (i=1,14) through the fuzzy relationship 1

~R . The composition can be viewed 
as a matrix product 

( ) [ ] ( ) 4 1,   ;41 1,   ,  ~    
i

 1j ==== ∑ jiraRRf iRijF j µµ o        (4) 

where Σ corresponds to max operation and product to min operation. 

( ) ( )( )[ ]arf ijiRijF  , minmax µµ =          (5) 

According to (3), (5), the fuzzy function vector results 

( ) [ ]9,09,08,09,0
                               4321

=f
ffff

Fµ
        (6) 

The function vector ( )fFµ  represents the functional structure of the office chair. Next, we 
consider the α-level, α = 0,5. The set of product functions that belongs to the fuzzy set F~ at 
least to the degree α, is called α-level product functions set. 

( )( ) ( ){ } 5,0    ,  ≥= fffF F µµα         (7) 

The significance of (7) is that functions with the membership value ( ) 0,5  <fFµ  are 
considered not so important in the product functional structure. According to (7) the set of 
chair functions defined by (6) remains unchanged.  

2.2 Building the fuzzy functional network 
The fuzzy functional network is used to represent the functional structure of a product. 
Currently, crisp representations of products’ functional structure are used. In these 
representations the product functions are symbolised by nodes and are interconnected. Each 
connection is characterised by a membership function, which takes the value of 1 if there is a 
relation between the two considered functions, or the value 0 if there is no relation.  
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The interactions between the functions have different intensities. Fuzzy sets enable designers 
to establish the intensity of each relation between the product functions in order to evaluate 
different product solutions. This is the reason we consider that relationships between 
functions are fuzzy. The fuzzy relationship 2

~R  between the elements of F is characterised by 
the membership function µR2 ∈[0,1]. The membership function, µR2, represents the degree of 
intensity of the interactions between each couple of functions (fi-fj). 

A fuzzy relation can also be interpreted as defining a fuzzy binary graph [12]. Let F be the 
crisp set of functions (the nodes of the graph), then the fuzzy graph of the chair’s functional 
structure is defined as 

( ) ( )( ) ( ){ } 4 1, j  ;41,i  ,,   , ,,  ~
j2 ==×∈= FFffffffR ijiji µ       (8) 

The fuzzy functional network presented in figure 3, is a graph representation of the fuzzy 
relationships existent between the functions of a chair (configurable product). The nodes of 
the graph represent the functions, the arcs represent the relationships between a random pair 
of functions and the labels along the arcs represent the membership grade.  

The following hypotheses are made: 

• when i = j, µR2(fj-fj) = 1; 
• the functional binary graph or network is undirected, that is the fuzzy relation 

representing the graph is symmetric. 

For different categories of products, the membership function degree, which characterises 
each couple of functions in the fuzzy functional network, can vary in the interval [0,1]. This 
variation of intensity generates different “configurations” of functional networks. Due to the 
relationship between the set of product functions and the set of physical solutions, the 
different variants of fuzzy functional networks that are generated allow the designers to obtain 
a variety of product structures. 
Let us consider our example. Here, four types of chairs have been considered. Each type is 
characterised by its own fuzzy functional network. The functional network is composed by 
four functions (table 2), determined in the function-requirement model. Ten relationships are 
established between the product functions (table 3). Each relationship is characterised by the 
membership function µR2(fi-fj), i = 1, 4; j = 1, 4. 

 

Figure 3. The fuzzy functional network of a chair 
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µR2(f1-f3)
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Table 3. Product functions fuzzy relationships 

 Office Classroom Home Bar 

1. f1-f1 1,0 1,0 1,0 1,0 
2. f1-f2 0,9 0,8 0,9 0,6 
3. f1-f3 0,8 0,6 0,9 0,2 
4. f1-f4 0,9 0,9 0,8 0,9 
5. f2-f2 1,0 1,0 1,0 1,0 
6. f2-f3 0,7 0,5 0,8 0,1 
7. f2-f3 0,1 0,1 0,1 0,1 
8. f3-f3 1,0 1,0 1,0 1,0 
9. f3-f4 0,1 0,1 0,1 0,1 

10. f4-f4 1,0 1,0 1,0 1,0 

For instance, the membership function µR2(f1-f3) which characterises the couple f1-f3 takes the 
values: 0,8 for an office chair; 0,6 for an classroom chair; 0,9 for an home chair; 0,2 for a bar 
chair. The values 0,8 and 0,9 show that couple f1-f3 has a great intensity in the functional 
network of office and home chairs; 0,6 indicates a medium intensity of the couple for the 
classroom chair; while the 0,2 means that couple f1-f3 has a low intensity in the bar chair 
functional network.  

2.3 Building the function-physical solution model 
Each function in the set of product functions corresponds to different chair components. Each 
component on its turn has some alternative solutions. It is assumed that product components 
are defined at the beginning of the design process. Searching the physical solutions set that 
materializes the set of functions does not make the subject of this study.  
Physical solutions represent the physical structure of the product components and set up the 
physical solutions set. Each physical solution can satisfy in a certain degree the set of 
functions F. This aspect implies that the relationship between the set of functions F and the 
set of physical solutions S has a fuzzy character. The fuzzy relationship 3

~R  defined between 
the two sets F and S is a subset of the Cartesian product F×S characterised by the membership 
function µR3. It takes values between 0 and 1, and denotes the satisfaction degree of a function 
by the set of physical solutions. 
Let us consider our example. Based on the set of functions determined in the functions-
requirements model, some components of a chair and their different variants are presented in 
morphological chart (table 4). Each component performs a single function or more, according 
to the case, and similarly a single function can be performed by a single component or more. 
The membership matrix representing the function–physical solution relationship is illustrated 
in the figure 4. 

Figure 4. Function–physical solution membership matrix  
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Table 4. The morphological chart for a chair  

 
Considering the function–physical solution fuzzy relationship, the following set of physical-
solutions has been found  

( ) ( ) ( ) ( ){ }S,S ,S,S ,S,S ,S,S  
    

14129865323 =S
StandArmrest  ack   Seat     B           

R
  (9) 

2.4 Building the physical solution-constraint model 
The fuzzy constraints - physical solutions model is built to represent the fuzzy relation 
between the set of constraints and the set of physical solutions.  

Design is generally defined as a process of creating a description of an artificial object that 
satisfies certain constraints. Multiple applications are integrated during the various phases of 
the product development. Due to the different nature of applications, the set of constraints to 
be used can be manufacturing constraints, assembly constraints, maintenance constraints etc. 
We name generically all these application constraints as the set of technological constraints.  
The physical solution–constraint model is carried out in two stages. In the first stage, we 
define the fuzzy relationship between the physical solutions and the constraints. In the second 
stage, considering the constraints and using the fuzzy operators, the solutions that satisfy the 
given constraints are inferred.  
Stage 1: Definition of Physical solution–Constraint Fuzzy Relationship. A fuzzy set of 
physical solutions has resulted from the application of product functions - physical solutions 
fuzzy relationship.  

The set of physical solutions S must satisfy a set of technological constraints noted C. Each 
constraint can be satisfied in different degrees by the elements belonging to the set of physical 
solutions S. A fuzzy relationship 4

~R  is defined between the sets C and S. This relationship is 
a subset of the Cartesian product C×S and is represented by the membership function µR4 that 
can take values in the interval [0,1]. These values indicate in what degree each constraint is 
satisfied by the set of physical solutions. 

The fuzzy relation 4
~R on S×C can be represented as a membership matrix [ ]4R , whose 

generic term [ ] p4  kR is ( ) kpR bcs   ,4 =µ , , zp, xk 1   ;1  == . 

Let us consider the chair example. For the assembly case, the following constraints are 
considered 
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� C1: Standardization 
� C2: Proper spacing ensures allowance for a fastening tool  
� C3: Maximize symmetry 
� C4: Design mating features for easy insertion 

The membership matrix representing the constraint–physical solution fuzzy relationship is 
illustrated in figure 5. 

( )[ ] [ ]
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Figure 5. Constraint-physical solution membership matrix 

Stage 2. Constraints mapping onto physical solutions. The goal of this stage is to map the 
constraints of one specific application onto physical solutions.  
Let us consider our example. The set of constraints is given by the assembly constraint vector 
(10). The standardization and symmetry are very important and their membership values are 
µR4(c1) = 0,9, designing mating features is moderately important and proper spacing for 
fastening tool is unimportant.  

( )[ ] [ ]  0,40,800,9                              
4    3     2       1   .                  

=c
NoConstraint

Cµ
 (10) 

In this case, the fuzzy solution set S (k=1,14) is induced by the composition of the fuzzy 
requirement set C (p=1,4) through the fuzzy relationship 4

~R . The composition can be viewed 
as a matrix product 

( ) [ ] ( ) 4 1,   ;41 1,   ,  ~    
k

 4k ==== ∑ pkcCbRCs pkpkS µµ o  (11) 

where Σ corresponds to max operation and product to min operation. 

( ) ( )( )[ ]bcs kpp
k

kS  , minmax µµ =         (12) 

According to (10), (12), the fuzzy physical solution vector results   

( ) [ ]9,08,09,007,08,08,006,08,09,07,09,09,0
                            

=s
s     s  s s   s    s   ss   s      ss         s  ss

S

1413121110987654321

µ
   (13) 

The function vector µS(s) represents the set of physical solutions of the chair. An α-level, can 
be considered, where α = 0,5. The set of physical solutions that belongs to the fuzzy set S~ at 
least to the degree α, is called α-level physical solution set. 

( )( ) ( ){ } 5,0    ,  ≥= sssS S µµα       (14) 

According to (14) the set of physical solutions remains the same as defined by (13). 
To find the final valid product configuration the α-level set Sα and the SR3 are intersected. The 
final product configuration is.  

{S}α∩R3 = {(S2, S3), (S5, S6), (S8, S9), (S12, S14)}     (15) 
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3 Conclusions 
A configurable product family design approach using fuzzy set theory is proposed. The 
functional network, functions-requirements relationship, functions-physical solutions 
relationship and physical solutions-constraints relationship are built and used to configure a 
product family. Different product configurations are generated using a set of physical 
solutions defined at the beginning of the design process. This approach has been applied to 
configure one-of-a-kind product. Further research is concentrating on the development of an 
integrated platform based on the multiple fuzzy models, capable to assist the designers 
throughout the entire design process. 
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