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ABSTRACT 
This paper discusses a new computational framework for requirements-driven automated design 

synthesis that allows design changes to be accepted seamlessly from multiple stakeholders and the 

computer software itself. The framework, based on declarative-variational mathematical 

underpinnings, supports the systematic design process by using requirements as a basis for 

coordinating designer and computer efforts. We define a design knowledge representation based on 

the design exemplar that enables mapping a large set of real-world design requirements to a computer-

interpretable form. A new generic high-level algorithm that can apply requirements (exemplars) 

simultaneously is proposed. As opposed to conventional rule-based production systems, which enforce 

design requirements one at a time, this new algorithm is able to detect incompatibilities between 

requirements by applying the requirements simultaneously.  

Keywords: computer-aided design, automated design synthesis, requirements satisfaction, constraint 

satisfaction, design exemplar technology 

1 INTRODUCTION 

Computer-Aided Design (CAD) software is used pervasively in the manufacturing industry to speed 

up the creation, analysis and realization of products and it is difficult to imagine not using it.  

However, current CAD software does little more than accept the input of designs that have already 

been conceived by a designer; CAD software does not provide any help in actually conceiving 

designs. We have argued that this limitation is inherently due to the mathematical framework on which 

CAD software is implemented [1]. In this paper we propose a next-generation requirements-driven 

CAD framework with declarative-variational [2] mathematical underpinnings that would enable a 

design exploration process as shown in Figure 1. Here designers and all interested stakeholders 

generate a set of requirements that are mapped to a computational representation and applied to the 

computational system.  At the same time engineering knowledge from domain experts is also applied 

to the system, also expressed in the form of requirements.  The requirements are combined seamlessly 

within the computation system which can then synthesize alternative satisficing solutions.  

Requirements can be posed in terms of dynamically applied algebraic, geometric, physical, and 

semantic relationships, including requirements on attribute values and the existence of the design 

objects and relationships themselves. The computation system allows designs to be under-constrained, 

thus allowing for tweaking of the design by designers and the addition of new requirements.  The 

computation system also allows designs to be over-constrained and thus allows for the detection of 

incompatible requirements. Examining the alternative solutions synthesized (and evaluated and 

selected) by the computer, the designer can remove unanticipated deficiencies by further refining the 

requirements, by either changing, adding or removing requirements.  Once the requirements have been 

sufficiently refined, attractive design solutions can be explored in greater detail by recursively 

repeating this process.  

This research tries to answer the question as to how can design requirements and knowledge be used 

to generate and evaluate designs automatically? Rather than continuing to use the computer as an 

analysis calculator or document recorder, we propose to use the deductive, algorithmic reasoning of 

computational support to create a framework in which humans and computers can interactively reason 
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about the design problem, collaboratively generating, evaluating, and selecting among design 

alternatives and iteratively refining the design requirements. In this paper we will address the three 

fundamental aspects of the system as follows: 

• The design exemplar data structure and how it can be used to represent design requirements. 

• The generic exemplar algorithm and how it can be used to enforce design requirements one at a 

time. 

• A new generic high-level algorithm that can apply design requirements (exemplars) 

simultaneously and detect incompatibilities in the requirements. 
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Figure 1. Requirements-Driven Design Exploration Process 

 

2 REPRESENTING REQUIREMENTS USING THE DESIGN EXEMPLAR 

2.1 Types of Requirements  
Design requirements are defined as conditions or properties which are essential or requisite to the 

design [3]. Design requirements are also defined as something that constrains the possible solutions of 

a design problem to a subset of all possible designs [4]. Often, as in this paper, design constraints are 

considered the same and used interchangeably with design requirements [3, 5, 6]. As well, for us 

design specifications are the lists or collections of requirements of the product being designed. The 

specification list defines the design problem, and as we solve for the design we modify the problem 

itself be changing the specification in order to get a solution [3, 5]. At every stage of the systematic 

design process, design requirements play an important role in defining the design task.  

In order to be able to use requirements in a computational system, the requirements, which are 

originally provided in human interpretable “natural language,” need to be represented in a computer 

interpretable form. Until now, research has mainly been done in the field of requirements engineering. 

This research has been concerned with four aspects of requirements management and is largely 

domain independent. The research can be classified into the following broad areas as follows [7-9]: 

1. How to elicit requirements [10-13] and validate them [14-16] by analyzing the specification to 

check whether these are the ones the designers really want. 

2. How to achieve Requirements Tracing [17-19]; i.e., trace requirements back to the originating 

source as well as its subsequent use in the design. 

3. Managing evolving requirements in a collaborative environment [20, 21].  

4. Applications of managed requirements in evaluating and checking the design for satisfaction of 

the requirements [22-24].  

From a system engineering viewpoint, STEP AP233 standards [25] have been proposed and 

encapsulate standards used for requirements management. Many commercial software’s like Telelogic 

DOORS [26] and Teamcenter for systems engineering [27], which can work off these standards, are 
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available to assist the users in the above mentioned areas. Requirements management forms a very 

crucial part of systems engineering. Efforts have also been made to study requirements management 

covering the four broad areas discussed above and applied to automotive engineering [28]. 

Information modelling efforts to represent requirements [29, 30] do not provide support for linking the 

requirements to detailed geometry and driving the creation of geometry. In the research presented in 

this paper we do not concentrate on requirements management but on how the requirements managed 

by the user can be effectively used to assist in mechanical design by computationally affecting the 

creation of geometry and being linked to it. In this research, we are interested in the integration of 

requirements with the “generate,” “evaluate” and “select” phases of every design stage throughout the 

design process so that they can be driven automatically using the requirements as an input. 

At a fundamental computational level we have found that the detailed requirements seem to fall into 

three different types:  

1. Requirements on Design Attributes 

1.(a) Design attribute X must be equal to V  

Here X is an attribute or property of the design that can be evaluated or can be directly observed and V 

is a qualitative or quantitative value (loosely – an adjective) which can be absolute or can be an 

attribute of other design(s) or design element(s). An example of a Type 1(a) requirement is “The 

length of the truck cargo box must be 3700 mm”, or “the length of the cargo box must be the same as 

the length of the cargo box from a competitor.” A key impact of Type 1(a) requirements is that they 

take away degrees-of-freedom in the design.  That is, one or more variables whose value could earlier 

be chosen freely from a continuum of alternatives are now constrained to take on a controlled value. 

 1.(b) Design attribute X must be greater than V  

This is an inequality type of comparative expression. Here again V is (i) an absolute value, (ii) an 

attribute of one other design or design element, or (iii) an attribute of a set of other designs or design 

elements. For example, (i) “the length of the cargo box must be greater than 3700 mm,” (ii) “the 

length of the cargo box must be greater than the length of the cargo box from a competitor,” or (iii) 

“the length of cargo box must be greater than the lengths of cargo boxes from all competitors.” (Think 

of “big,” “bigger,” “biggest.”) Although Type 1(b) requirements are also comparative requirements as 

Type 1(a), they do not take away any degrees-of-freedom in the design, but instead only serve to 

bound the design space. 

1.(c) Design attribute X must be as great as possible 

This requirement describes an objective. It can be stated in a number of different ways (e.g., “as low as 

possible,” “as light as possible”). Type 1(c) requirements refer to design attributes as in Types 1(a) and 

1(b) and in general are also specified with respect to a target value, which implicitly can be positive or 

negative infinity. However Type 1(c) requirements have the interesting and unique ability to take 

away degrees-of-freedom “en mass.” For example, in the requirement “the length of the cargo box 

must be as great as possible” every free variable to which the length is sensitive will have all of its 

degrees of freedom removed.  

2. Requirements on the existence of objects and relationships 

 2.(a) Design must have Y  

Here Y is a feature, a component or some element of the design. Requirements expressed as “Design 

must have Y” deal with the existence of objects. For example the requirement that “a truck must have 

wheels, motor, cargo box and cab” deals with the existence of these objects. These requirements also 

impact the existence of objects later in the design process, for example the existence of more detailed 

objects such as the faces, edges and vertices that are necessary to describe the shapes of these 

components.   

2.(b) Design element Y1 must be R with respect to design element Y2  

Here R is a relationship. This includes requirements such as “the cargo box must be PART OF the 

truck” and “the line represents the GEOMETRY OF the road.”  

3. Requirements on Function 

  Product must do Z 

Here Z is a function or action verb. These are the function or behavioural requirements (e.g., cargo box 

must store goods). These are typically the most important requirements for mechanical devices but not 

the only ones. For example aesthetic requirements on form and shape cannot be described using action 

verbs, but necessitate using Type 1 and 2 requirements. 
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2.2 Mapping Design Attribute Requirements to Exemplars 

2.1.1 Objects and Constraint Types 

Type 1 requirements can be represented by constraints and objectives that control object attributes. 

Current CAD systems are based only on equality type of constraints between geometric objects and 

parameters, as shown in column two of Table 1 and can map only the Type 1(a) kinds of 

requirements.
1
  However, to truly represent all kinds of Type 1 design requirements, constraints such 

as those shown in all columns of Table 1 must be allowed [31-33]. Column 3, inequality constraints, 

must be allowed in order to represent Type 1(b) requirements and column 4, objectives, must be 

allowed in order to represent Type 1(c) requirements.   

 

Table 1.  Object and Constraint Types 

Object Types Equality Constraints Inequality Constraints Objectives 

(a) Algebraic 
Variable Equation, Table Inequality Minimize, Maximize 

(b) Geometric 
Point, direction, line, 

plane, circle, ellipse, 

parabola, hyperbola, 

cylindrical surface, 

spherical surface, conical 

surface, toroidal surface, 

B-spline curve, B-spline 

surface 

DISTANCE, ANGLE,  

RADIUS, 

COINCIDENT, 

INCIDENT, 

TANGENT, 

PARALLEL_OFFSET, 

PARALLEL_DIRECTI

ON, RIGHT_ANGLE 

ORDER_ON, 

IN_FRONT_OF, 

LEFT_OF, 

ON_INDICATED_SIDE, 

SAME_ORIENTATION, 

ORIENTED_LEFT_OF, 

(plus opposite versions of 

these) 

FARTHEST_FROM, 

FARTHEST_IN_INDI-

CATED_DIRECTION, 

CLOSEST_ORIENT-

ATION, 

ORIENTED_MOST_ 

LEFT_OF (plus opposite 

versions ) 

(c) Topological/Geometric 
Vertex_point, 

edge_curve, 

face_surface, solid 

LENGTH, AREA, 

VOLUME, MOMENT 

CONCAVE/CONVEX, 

SMOOTH/SHARP, 

INSIDE/OUTSIDE 

 

2.1.2 The Design Exemplar 

Although many Type 1 requirements apply directly to specific instances of design objects, more often 

Type 1 design requirements apply to types of objects or certain situations (e.g., all wheels must be 

tangent to the road) and must be applied dynamically as the design changes (e.g., as new wheels are 

created in the design). Design exemplar technology provides a logical reasoning mechanism that can 

be used in a declarative-variational environment to apply constraints and objectives automatically 

where they are applicable. The design exemplar is a powerful, generic data structure developed to 

represent geometric, algebraic, physical, and semantic design characteristics in design problems [31, 

34, 35]. Designers, using exemplars, can find geometric properties (e.g. walls with a specific 

thickness) in CAD models and then change these properties as needed (e.g. change the wall thickness 

from 2.5 mm to 12.7 mm).  In the exemplar graphical representation used below, round nodes are used 

to represent objects and square nodes are used to represent relationships or constraints, which can be 

unary, binary, or n-ary. Exemplars represent design characteristics by defining the objects and 

relationships that must exist explicitly in the design model when the design has the given 

characteristic. For example, the Designed_Offset_Faces exemplar shown in Figure 2(a) defines a 

characteristic in which there exist in the design model two faces (f1 and f2), that have been explicitly 

constrained by the designer to be offset from one another. Once an exemplar has been defined, a 

pattern matching algorithm (e.g. [36]) can be executed to identify faces in the design that the designer 

has offset.  One difference of exemplars from conventional face adjacency graphs [66] and graph 

grammars [37, 38] is that exemplars allow defining sub-graphs that repeat (repetition block), sub-

graphs that must not exist in the design (NOT block) and sub-graphs that can occur in different ways 

(OR, XOR blocks).  

An exemplar can also describe objects and relationships that are implicit in the design.  For example, 

Figure 2(b) shows an exemplar, “Offset_Faces,” in which two faces exist in the design that are 

                                                      
1
 I-DEAS is an exception because it allows variables to also be controlled by inequality expressions. 
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implicitly offset.  That is, they happen to be offset in the design, but are not directly being controlled 

to be so.  To find instances of patterns with implicit relationships, pattern matching must be combined 

with solving and evaluating constraints.  Specialized domain-specific solvers are called by a generic 

solving algorithm (see [31, 39] for complete details on the generic solving algorithm and supported 

solvers). Implicit objects and relationships are shown with dashed lines in the exemplar graph. 
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Figure 2. (a) Exemplar for “Designed offset faces” (b) Exemplar for “Offset_Faces” (c) 

Exemplar for Complete “Designed offset faces” 

Besides distinguishing explicit and implicit characteristics, an exemplar also distinguishes what a 

design is like when it has the described characteristic and when it does not.  For example, Figure 2(c) 

shows an exemplar distinguishing between faces that have been designed to be offset and those that 

have not.  The “valid” and “invalid” parts of an exemplar describe the two situations:  valid, the 

identified faces are explicitly designed to be offset, and invalid, the identified faces are not explicitly 

designed to be offset.  The “valid” and “invalid” components enable modifying or enforcing a design 

characteristic in terms of both the existence of objects and the values of attributes. The exemplar 

algorithm works somewhat like a graph grammar production system [37, 40] in that the graph from 

one component is recognized in the design graph using a sub-graph isomorphism algorithm (with 

evaluation of any implicit relationships). Matches that are found in the design of the invalid 

component are converted to the valid component (or vice versa) by adding and removing explicit 

objects and relationships and enforcing any implied relationships. Modifications can include changing 

values (e.g., modify hole diameters) or changing existence (e.g., add or delete hole features).  

So far, exemplars have been used for single task problems [31, 41-45] such as (i) identifying design 

objects with a given characteristic (e.g. undercut faces), (ii) evaluating design properties (e.g. length of 

a duct), (iii) validating designs (e.g. not too big), (iv) comparing two designs with respect to a 

characteristic, and (v) modifying a design (e.g. to have or not have a fillet).  This research is the first 

time that the design exemplar has been considered for use in automated design synthesis. 

2.1.3 Composite Constraints and Dynamically Applied Constraints 

Composite constraints are required in order to express, in a comprehensible way, requirements that can 

only be expressed as system of constraints. For example, a requirement that distance between two 

objects be greater than a specified value has to be expressed using a set of two primitive constraints: a 

DISTANCE constraint and an algebraic inequality expression.   

In some instances a design requirement can be easily described by a single geometric constraint, but it 

is not known ahead of time which objects are the ones on which the constraint should be applied.  For 

example, a constraint on the overall length of a part can be imposed by a constraint DISTANCE 

(object_1, object_2, distance_measure) where distance_measure is the distance between object_1 and 

object_2, which are at opposite ends of the part.  The objects referenced by this constraint could 

change as the design progresses, as occasionally different objects become the end objects.  Figure 3(a) 

shows an example of a situation where this can happen. If we require the overall length to be 

maintained to be less than or equal to 10 units then as the shape changes, the DISTANCE constraint 
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must be applied to different objects. A dynamic composite constraint must provide rules to identify 

which objects are the ones that should be constrained. This makes the constraint much more 

complicated but can be implemented using exemplars as shown (compressed) in Figure 3(b).  
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 Figure 3.(a) Overall Length constraint acts on different objects as shape changes (b) The 

dynamically applied “overall length” constraint implemented using an exemplar 

2.3 Mapping Existence Requirements to Exemplars 
In order to represent Type 2 requirements in a computational representation we must also be able to 

somehow express requirements on the existence of objects and relationships. Figure 4 shows the 

exemplar used to enforce the requirement that the geometry of a wheel be added to the design if an 

object of type “Wheel” exists in the design.  In general the exemplar algorithm will enforce that the 

design stays with the “valid” and not the “invalid” for whatever exemplars are given. Hence when the 

algorithm detects that an object called wheel exists it will try to make the design valid by adding the 

geometry for wheel into the design if necessary.  

 

 

 

 

 
Figure 4.  Exemplar for “Wheel Elaboration” Figure 5.  Application of Technical Principle for the 

“Propels” Function 

2.4 Mapping Function Requirements to Exemplars 
Requirements like “Assemble and Glue cartons” and “Count number of cartons” are requirements on 

the function of a design. In systematic design, requirements on function of the Type 3 must map to 

alternative function structures, which must map to alternative technical principles, which must map to 

alternative embodiments in order to realize a design [3]. The embodiments ultimately seem to map to 

specific requirements on what the design must have and must be (i.e., Type 3 requirements ultimately 

seem to map to Type 1 and 2 requirements).  

Let us consider the requirement on function that, “motor must propel truck” for the design of a truck. 

As shown on the left side of Figure 5, the functional requirement “motor must propel truck” can be 

expressed as a relationship that must be enforced between the motor object and the truck object. 

Without elaborating on the meaning of the “propel” concept it is possible to define allowable solution 
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Exemplar Basic_elaborated_wheel_geometry 
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NOT 
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Circle Circle 

geometry_of 

Wheel Wheel 
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principles, one of which must be chosen if the product is to be realized.
1
  These are shown on the right 

hand side of Figure 5. In turn, each of the solution principles can have another exemplar elaborating it 

with possible embodiments.  

3 ENFORCING DESIGN REQUIREMENTS ONE AT A TIME 

The existing generic exemplar algorithm can be applied manually to enforce requirements one at a 

time [31].  The user first selects the requirement (exemplar) to be applied and then presses the “Find” 

button to highlight the next occurrence of the invalid component of this exemplar in the design.  If an 

occurrence is found, pressing the “Change” button causes the algorithm to remove from the design 

objects and relationships that are only in the invalid component, and add objects and relationships that 

are only in the valid component.  Objects and relationships that are explicit are added permanently 

whereas objects and relationships that are implicit are added temporarily until the whole system has 

been solved using a generic propagation-based constraint satisfaction solver that calls domain-specific 

subsystem solvers [31].
2
  The next invalid occurrence is then highlighted automatically and “Change” 

can be pressed again right away.  This process can be repeated until all occurrences have been handled 

or, alternatively, the “Change All” button can be pressed to change all of the occurrences, one at a 

time. This procedure can then be repeated with a different exemplar.  Though this process is easier 

than creating objects and relationships manually, and allows standardizing how “requirements” are 

applied, it is still not automated design synthesis and it is still possible to apply a design change that 

invalidates a previously applied requirement. 

4 APPLYING REQUIREMENTS SIMULTANEOUSLY 

Many automated design synthesis systems exist.  Automated design synthesis systems produce 

candidate solutions that are later analyzed, refined and tested automatically[46-48]. One approach to 

automated design synthesis is known as function-based synthesis, where an abstract functional 

description for a device is transformed into a structural description that satisfies the functional 

requirements [49].  In function-based synthesis the design decisions are driven by the function of the 

final design through the theory of functional reasoning where the design structure consists of a set of 

geometric objects (features and parts) and a set of functions [50].  Each geometric object facilitates its 

own set of functions and the geometric objects may be combined to provide more complex functions 

[51].  To generate the design, one must find or construct a structure that has the necessary functions 

[52].  Systems based on functional reasoning are limited in that they have difficulty performing 

reasoning with combinations of objects.  Solutions in which the intended function is facilitated by a 

combination of objects are not identified [50]. Other approaches to design synthesis do not consider 

the function of the design explicitly but include it implicitly in rules or procedures (e.g. [53]). 

Rule-based methods for design synthesis create candidate designs by applying pre-defined operations 

one after the other to build up designs.  The sequence of operations may or may not be pre-defined, 

but an operation can only be applied if its pre-conditions are met.  Directed search algorithms drive 

designs towards characteristics that best meet the given set of design objectives, by varying the 

operation sequence. One sub-class of rule-based design methods is grammatical design in which a 

grammar, consisting of a vocabulary of elements, a set of rules, and an initial structure, transforms 

structured arrangements of elements into new structures [54]. Design using grammars involves 

recursively selecting transformation rules and applying them to a candidate structure, until a final 

structure that satisfies design requirements emerges [55].  In “shape grammars,” the vocabulary 

elements are symbols, that is, shapes made up of points and lines.  In “graph grammars,” the 

vocabulary elements are different types of nodes and edges.  Grammars have been utilized to create 

spatial and architectural designs [56, 57], mechanisms [58, 59], and machinable feature models [38] .  

Other rule-based methods for design synthesis have been presented by [60] and are represented by 

powerful commercial knowledge-based systems such as ICAD [61] and Knowledge Fusion [62].  

These systems provide a general programming language for defining rules; specifying when the rule is 

                                                      
1
 We make an assumption that there are only a finite number of solution principles for any given function and 

that these can be identified ahead of time in design catalogs. This assumption is justified for practical purposes 

since if a solution principle is not known it cannot be used.  
2
 This is the intended approach.  The currently implemented constraint solver only satisfies the valid component 

of the exemplar without considering the rest of the design. 
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applicable and what action is performed.  These systems can create geometry or flag design problems.  

Rule-based systems have the ability to deal with the physical rather than the abstract form but still they 

are inherently parametric by nature.  However, rule based systems still apply requirements one at a 

time. 

4.1 Proposed Methodology 
  To generate valid designs, two types of knowledge are required:  design refinement knowledge 

and design validation knowledge.  Design refinement knowledge defines the details that correspond to 

a more abstract object.  These details must be created and added to the design by the synthesis 

methods.  This allows the design to be elaborated and to progress from one state to another.  Figure 6 

shows design exemplars that characterize an elaborated truck and an elaborated cargo box.  To enforce 

these characteristics, the synthesis engine must create the missing objects:  Cargo_box, Wheel_set, 

Cab, and Motor.  Note that the Wheel_set is in a repetition block, with an unspecified number of 

repetitions (except that the minimum is two).  Because the number of wheel sets is under-defined, a 

variety of solutions can result, as shown in Figure 7. 
 Exemplar Truck_Elaboration 

“False” (not elaborated) “True” (elaborated) 

NOT 

Truck 

part_of 

Rep: [2,?] 

Cargo
_Box 

Wheel
_set 

Cab Motor 

part_of 

Rep: [2,?] 

Cargo
_Box 

Wheel
_set 

Cab Motor 

Truck 

 

 

 

 

 

Cargo_Box 

Exemplar Cargo_Box_Elaboration 

“False” (not elaborated) “True” (elaborated) 

NOT 

ID_ 
right 

Line Line Line Line 

geometry 
_of

ID_top ID_ 
bottom 

ID_left 

Line Line Line Line 

geometry 
_of

ID_top ID_ 
bottom 

ID_left ID_ 
right 

Cargo_Box 

 

(a) Truck Elaborating Exemplar (b) Cargo Box Elaborating Exemplar 

Figure 6.  Truck Refinement Exemplars (Simplified) 

 

Soln. 3. Soln. 2. Soln.1. 
 

Cargo_box 

Wheel_set 

Motor 

Cab 

 

Figure 7. Three Possible Solutions from Truck Refinement 
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ID_bottom 
Line 

Tangent 

Circle 
geometry_of 

Wheel 

Exemplar wheel_below_truck 
Other validation exemplars 

 bottom_of_cargo_box_and_motor_lined_up 

 all_truck_parts_connected 

 wheels_not_touching 

 clear_view_in_front_of_cab 

 

Figure 8.  Validation Exemplars (Simplified) 

Design validation knowledge must be used to control the validity of a design with respect to good 

design practice, available sizes of material, natural laws governing design behavior, etc.   For example, 

to control the positions of the truck elements from Figure 7, validity requirements (Figure 8) are 

applied. To solve the implicit “tangent” geometric constraint between design objects, the geometric 

solving algorithms are used. Applying the validity requirements to Solution 1 from Figure 7, results in 

several solutions as shown in Figure 9, some of which may be novel or may lead the designer toward a 

novel design.  

4.2 Proposed Algorithm 
Two approaches are typically employed in design synthesis systems:  a sequenced production system 

of rules (rule chaining) and unordered application of rules (graph grammars).  Both approaches apply 

sequential design changes as shown in Figure 10(a) which illustrates the application of a series of 
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mapped requirements (R0, R1, R2) one at a time to generate a design solution based on an initial 

design model (M0).This is typical of a graph grammar approach of applying a sequence of rules, 

modifying an initial model into a final solution. 

 

 

 

 

 

 

 

 

 

Solution 1a Solution 1c Solution 1d Solution 1e 

Figure 9.  Alternative Solutions after Applying Validity Requirements  

Here, the rules may be repeated or reordered. The manual application of the generic exemplar 

algorithm also employs this approach. Figure 10(b) shows a new generic high-level algorithm we hope 

to implement which applies design requirements simultaneously and detect incompatibilities in the 

requirements. Rather than applying discovered changes incrementally as with graph grammars and 

current knowledge-based systems, the algorithm records a set of proposed changes, compares them 

with each other for consistency, and then applies them, effectively executing the exemplar algorithm 

simultaneously for many different requirements.  This declarative-variational synthesis approach is 

given by the following steps: 
1. For each requirement exemplar, Rm, test the applicability to the same current model, Mi, and store 

applicable changes in Mi-j. 

2. Compare all in Mi-j with each other to detect incompatible object additions or deletions.  Stop if there is an 

incompatibility. 

3. Apply stored changes to Mi to get Mi+j.  Perform constraint satisfaction to obtain attribute values.  Re-

evaluate applicable Rm to see if they are still valid.  Stop if there is an incompatibility. 

4. Repeat until no more Rm are applicable. 

 

 
M0 R0 M1 

M1 R1 M2 

M2 R2 M3 

Check 

Validity 

F 

Select New 

Sequence 

T 

DONE 

        

 

Check 

Validity 

F 

Found Traceable 

Requirement Conflict 

T 

More 

Requirements 

M0 R0 M1-0 

M0 R1 M1-1 

M0 R2 M1-2 

 
    (a)      (b) 

Figure 10. (a) Graph Grammar Synthesis (b) Requirements-Driven Variational Synthesis 

5. DISCUSSION 

   As a result of this research the activities of synthesis, evaluation, and selection in the systematic 

design process will be supported in a common framework.  Once prototype software has been created 

we expect that novel solutions will arise both automatically and through designer initiative: 

1. Automatically during object synthesis, as different configurations are created by the computer, 

2. Automatically in constraint solving, when choosing from multiple solutions, or choosing 

solution values from a range of possible values, 

3. Through the designer, as design requirements are added, removed or modified, and 

4. Through the designer changing assumptions or restrictions in the engineering knowledge, 
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5. Through ideas that might be sparked in the user’s mind when seeing an odd configuration 

generated by the computer. 

The paradigm of requirements driven computations is expected to be a vital part of next-generation 

CAD systems.  Besides promoting innovative designs, the use of knowledge-bases will promote safer, 

less costly products with fewer design errors.  The use of requirements as a basis for collaboration will 

also reduce instances in which design modifications detrimentally impact the intent of earlier design 

decisions. 
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