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ABSTRACT 
The uncertainties prevailing in design evaluation activities often have a great impact on the success of 
the end product performance. Because of these uncertainties, the capabilities of analytical and 
simulation tools are not yet adequate to allow for the wholesale replacement of physical testing. At 
present, theories and techniques for characterising uncertainty are not widely used mainly due to 
inefficient data and information management. Despite the maturity of information technology, 
engineering companies still fail to exploit the data and information collected throughout the product 
lifecycle mainly because of the limited structure in the information representation and the lack of reuse 
strategies in place. This paper describes a knowledge-based approach to capture and represent 
information that could facilitate the effective management of uncertainty in design evaluations. A case 
study and a number of scenarios are presented to illustrate the framework. The framework for 
capturing the design evaluation process knowledge is envisaged to facilitate reuse, improved 
uncertainty management and accumulation of engineering knowledge and understanding. The 
knowledge and insights can be used to evaluate confidence and risks in modelling capability at an 
earlier stage in the design process, to support selection of design tools and techniques and to optimise 
resource allocation in simulation-based design.  
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The uncertainties prevailing in design evaluation activities often have a great impact on the success of 
the performance of the end product. Because of these uncertainties, the capabilities of analytical and 
simulation tools are not yet adequate to allow for the wholesale replacement of physical testing. 
Traditionally, risk management employs a proactive methodological process to identify, assess, plan 
and mitigate risks caused by uncertainties. In design, conservative safety factors are applied in 
performance calculations to accommodate for the unknowns in model and data representation. 
Probabilistic design approaches facilitate improved understanding of uncertainty through the 
incorporation of stochastic data. Recent research developments focus on methods for characterising 
imprecise uncertainty using subjective judgement [1]. However, although such methods may be 
plausible in some situations (e.g. when data collection is not feasible), ultimate confidence in design 
evaluation can only be achieved by accounting for uncertainty in an objective manner. 
Due to incomplete understanding and continuously evolving knowledge, design evaluation processes 
are characteristically iterative, ad hoc and usually emergent with each step aiming to increment the 
knowledge state. As a result, the data used and generated during the design evaluation process is 
always changing state (uncertainty, confidence etc.) as it is continuously being validated. In 
simulation-based design, critical decisions are often based on predictive models supported by complex 
and sophisticated computer-aided tools and techniques. A major concern in such complex simulation 
processes is the lack of confidence in information that the simulation is dependent upon, for instance, 
due to lack of knowledge or assumptions made during the simulation processes.  
At present, documentation of the outcome of design evaluations is often anecdotal, greatly simplified 
and retrospective. Such practice has contributed to the significant lack of structure and consistency and 
omission of detail leading to the inability to reuse the models and data, potentially causing errors and 
inefficiencies in design. As a result, knowledge becomes implicit and the effectiveness of design 
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evaluations relies greatly on individuals’ competency and experience. Despite technological capability 
in continually and automatically collecting large volumes of data, engineering companies still fail to 
exploit the data and information collected mainly because of the limited structure in the information 
representation and organisation as well as the lack of reuse strategies in place. Poor data sharing in 
current documentation practice means that more advanced and data-intensive approaches like 
probabilistic methods have not been widely adopted in mainstream engineering. This is in spite of the 
maturity of tools and techniques for many years. As a result, complex simulation processes generally 
still assume deterministic and conservative values, enormously reducing the realism and opportunities 
in simulation processes [2]. Therefore, improvement in uncertainty characterisation has to be 
supported by documentation practice that increases traceability and sharing of objective data across 
design iterations and variants. 
This paper describes strategies to enhance design analysis reuse based on a process modelling 
framework to capture and structure information that could facilitate the effective management of 
uncertainty in design analyses. The main hypothesis proposed in this paper is that data and information 
related to the design evaluations for predicting performance of engineering artefacts can be managed 
to improve understanding of uncertainty and to exploit the representation of the information associated 
with these for reuse in future design activities. The framework proposed previously will be reviewed 
and discussed in the context of a case study and a number of scenarios applied to the case study. 
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2.1 Background and related work 
Process modelling is typically used to describe interrelated or sequential activities in a process to 
understand systems operation and to facilitate the visualisation of information flow in the systems. It 
allows for the decomposition of complex processes into suitable levels of abstraction, and the 
separation of information and activity provides a suitable basis for the accumulation of knowledge 
about the uncertainty and imprecision associated with each. A review of process modelling approaches 
that are typically available for modelling design processes has been reported elsewhere [3]. Recent 
developments in process representations for Business Process Management (BPM) and Work Flow 
Management (WFM) have focused on information representation that supports sharing and exchange 
across a broader range of processes in the product lifecycles.  
In this respect, developments based on the eXtensible Mark-up Language (XML) are complementary 
[4]. For example, MathML, Mathcad XML, Finite Element Modelling Markup Language (femML), 
Predictive Model Markup Language (PMML) and UnitsML are useful technology for interoperability 
enhancement in engineering applications. The availability of such interoperable technologies avoids 
the processing of information in proprietary formats, thus enabling each element in the process model 
to be plugged-and-played in a neutral environment. 
In order to adopt the process modelling approach for the documentation of the design evaluation 
process, suitable notations and nomenclatures need to be derived. In addition, a number of research 
developments in terms of taxonomy and ontology have been observed. One of the first developments 
of taxonomy in mechanical design problems was proposed in 1988 [5]. Recent work in this subject 
includes, for example, an ontology for generic engineering design activities and a product 
development process ontology [6, 7]. Developments include the identification of constructs such as 
design activities and their classes, resources and information/knowledge etc. as well as defining the 
relationships between these constructs. In order to reduce efforts in applying these ontology and 
taxonomy, methods for automatically capturing of design activities in an electronic environment may 
be useful. For example, an automated mechanism for inferring meaningful design procedure sequences 
by capturing events in the Computer-Aided Design (CAD) environment has been developed [8]. A 
tool for capturing information about the user’s interactions with computer has been demonstrated to 
provide activity profiles about the tasks being carried out [9]. 
More specifically, a taxonomy for ignorance in simulation processes that includes error and 
uncertainty has also been developed [10]. Such a classification may be a useful basis for developing a 
schema for documenting design evaluations to indicate the maturity of the information contained 
therein. Additionally, a method for dealing with uncertain information such as fusion rules has been 
demonstrated and is promising for automatic processing of uncertain information [11].  
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2.2 Capturing design evaluation knowledge 
We have proposed a framework for structured and formal documentation of design evaluation 
activities based on a process modelling approach. The framework development and its substantiation 
has been established in greater depth elsewhere [12]. The approach assumes that a modular process 
model for the design evaluation activities can be identified and represented at different levels of 
granularity. Activities are linked to one another (through formalised relationships) to form a network 
of activities that are performed to satisfy specific objectives, along with information flows and 
interdependencies. The idea is most suited to recording transactional processes, where clear objectives 
can be identified and the activities required to achieve them are known. An example of a transactional 
process is the stress analysis of a crankshaft using a validated finite element model (FEM) to assess its 
performance against a material failure condition. In this analysis, data is typically drawn from various 
sources to describe the present understanding of the geometrical dimensions, material properties, load 
cases etc.  
Discussion on the level of abstraction in this context has been reported in [12] where an activity level 
and transfer function level are introduced. An activity is defined as an act that consumes some inputs 
to produce some outputs. A process consists of inter-related activities performed to achieve specific 
goals. A process is composed of other activities, and may itself be an activity within a larger process. 
The transfer function level representation includes a set of activities that are characterised by transfer 
functions. Transfer functions are the mathematical representation of a relationship over a defined 
range of conditions that relate the input variables to the output variables with the purpose of evaluating 
the characteristics of interest of a physical system. They can be derived from physics and science, 
including analytical equations and numerical models. The transfer function level processes are 
bespoke, modular and ad hoc.  
For the activity level process, it was argued that the transactional processes can be developed using a 
taxonomy of design evaluation activities and templates for them can be provided. The objectives in 
these processes are to evaluate the performance of a design against the specified values of the 
performance indicators such as function, safety, cost, reliability and quality. The activity level 
representation encompasses activities that are not described by the transfer functions. The activities 
may include pre- and post-processing such as statistical distribution fitting and heuristic functions and 
rules, compare-evaluate-verify-assess etc. A number of common design evaluation processes and their 
objectives are suggested: 
• Sensitivity analysis – To determine the percentage contribution of each design parameter to the 

variation in performance parameters. 
• Performance modelling – To determine the performance parameters from the mapping of a set 

of design parameters. 
• Reliability analysis – To determine the probability of failure or reliability of components and 

systems. 
• Verification and Validation – To determine modelling system meets specifications and fulfils its 

intended purpose.  
• Error evaluation – To determine errors between estimated and actual performance. 
• Optimisation – To determine optimum design parameters that meet some objectives, e.g. 

minimum cost, weight or probability of failure. 
For our purpose, the process modelling notations and nomenclatures have been adapted for describing 
design evaluation activities, the information entities and relationships between them. This requires 
formalising extensions that are relevant to a range of analysis processes, including applications where 
uncertainty prevails in the data and model. The underlying premise in such transactional analytical 
processes is that they are guided by one or more objectives that can be characterised by performance 
parameters at the transfer function level. In related work [13], a classification has been presented 
based on three dimensions considered critical to making judgement about uncertainty in design 
analysis process: performance parameter, evidence and design space. Each of the dimensions is 
measured according to the quantity of data available to characterise them, where a classification of 
confidence levels has been derived (see confidence scale in Figure 2). The confidence scale allows us 
to interpret the level of precision associated with a design correlation that is consistent with 
uncertainty theories applied in the analysis. The design space is a discrete or continuous region where 
parametric variants can be realised through parameterisation of design variables. The more instances 
explored in the design space, the higher confidence we have in the capability and performance of our 
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analytical techniques. Based on the comparison between performance parameter and evidence, the 
error functions are obtained. The mathematical formulation of error functions has been studied 
previously [13] and included in Figure 1 (a) for reference. The method adopted separates the first and 
second moment of error, providing the normalised error functions for each component.  
In this paper, the framework concepts will be demonstrated through a case study application with 
particular emphasis on the complex information interdependencies, iterative characteristics and 
aspects of uncertainty and decision-making based on the outcome of design evaluations. At this level, 
Table 1 summarises some meta information that are useful to capture about the data and transfer 
function in the framework. Those attributes present in the case study described in the following section 
are also indicated in the same table.  

Table 1. Examples of meta information to be captured in the framework 

Data  Transfer Function  
Type 
– Design parameter (controllable/uncontrollable as in 
Robust Design)* 
– Performance parameter* 
Characteristics 
– Discrete/continuous (scalar*, vector, field*) 
– Dependency (time, other variable) 
– Nonlinearity 
– Statistical correlation* 
Uncertainty 
– Absolute minimum/maximum 
– Interval/range 
– Fuzzy set 
– Probability distribution (normal, others)* 
Error function 
– First moment* 
– Second moment* 
Source  
– Test (test program, conditions, sample size)* 
– Validated data (Product Data Management) 
– Assumed data (published, approximated)* 

Type 
– Closed-form* 
– Finite element* 
– Empirical model/response surface 
– Heuristics/rules 
– Neural network 
Source 
– Benchmark (e.g. NAFEMS) 
– Validated model 
– Standards & best practices 
– Knowledge/theory* 
Constraint 
– Assumptions* 
– Boundary & initial conditions 
Resources 
– Tools & techniques* 
– Software (spreadsheet, package)* 
– Person (name)* 
– Computer, calculator* 
– Time 

Note: Attributes marked with * are present for the case study described in later section. 
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3.1 Introduction to shrink-fit design 
A shrink-fit is a semi-permanent assembly method commonly used in industry to locate one or more 
components on a shaft or to transmit torque from the shaft. Usually, expansion of the external part by 
heating or reduction in size of the shaft by cooling is employed, the parts located and then the whole 
assembly returned to the room temperature. This establishes a pressure at the radial interface through 
interference in dimensions. The design of a shrink-fit often refers to the ISO Limits and Fits [14] that 
provides a selection of fit conditions to suit a range of engineering applications.  
In order that shrink-fits are properly designed and produced to achieve the required functionality in a 
consistent manner, a number of considerations are important [15]: 
• For the required fit condition and a given nominal dimension, optimum interference between the 

shaft and inner diameter of the hub and resultant radial pressure at the interface are determined 
by referencing standards and/or design guidelines [16]. 

• Very low dimensional variation or precise dimensional control through inspection of the 
component parts is required. For example in Six-Sigma methodology [17], the manufacturing 
process capability data is referred for estimating the dimensional variability of a shrink-fit 
design for the given manufacturing processes (usually by turning or grinding). 

• Surface roughness values should range from 0.4 to 1.6�mRa to provide adequate frictional 
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adhesion between the shaft and hub bore. 
• The working stresses and stress concentrations due to the shrink-fit pressure and additional 

stresses during operation must not exceed strength of the parts. Common failure modes such as 
material failure and fretting fatigue should be fully evaluated to ensure that the designed shrink-
fits would fulfil its function (torque transmission) without encountering failures. Material 
properties for evaluation such as the Young’s Modulus and strength data can be obtained from 
supplier databases or published sources. 

• The method of achieving interference through thermal expansion and contraction by the heating 
and/or cooling must be feasible as well as economical for materials chosen. The assembly 
requirements must be considered, e.g. components must be cleaned thoroughly and rapid 
assembly achieved after component heating/cooling avoiding misalignment. 

• Holding torque needs to be established from calculations to ensure torque requirement will be 
satisfied. Allowance for uncertainty may be necessary, for example, by applying a safety factor. 

• Alternative manufacturing processes or materials may be considered in iteration in order to 
satisfy all design requirements. 

3.2 Application of framework to shrink-fit design evaluation 
Although the shrink-fit design process is a relatively simple one, the design evaluations involved are 
sufficiently complex and require much richer representations in order to improve ability to reuse in the 
future. This case study is selected because it is a typical design problem and the modelling aspects are 
familiar to most engineers but not trivial in its complexity. This section discusses the application of the 
framework to the modelling of shrink-fits performance under torsion. 
Modelling the failure mechanism of a shrink-fit consists of two serial stages involving two 
performance parameters: contact pressure, P and holding torque, TH – the contact pressure is an input 
parameter used in the holding torque model. At the transfer function level, the alternative models 
(shown by links labelled <source_model>), the design and performance parameters (inward and 
outward arrows labelled <input> and <output> respectively) are shown in Figure 1 (c). The contact 
pressure in shrink-fits can be modelled using a classic closed-form Lamé’s thick cylinder formula 
[16]. The analytical equation relates radial (or contact) pressure, P at the interference of a solid shaft 
and hub of the same material to basic variables of a shrink-fit. Alternatively, finite element modelling 
can also be used to establish the contact pressure between shaft and hub interface in a shrink-fit 
assembly. A design formula can be derived based on the assumption that failure of a shrink-fits occurs 
when the radial pressure is insufficient to carry the applied torque and slipping occurs simultaneously 
along the contact surface. The holding torque at point of failure is therefore a function of friction, area 
of contact and radial pressure. Similarly, alternative more detailed modelling of the slipping 
mechanism to predict the holding torque can be achieved through a micro-mechanical [15] or finite 
element model. Experimentally, both contact pressure and holding torque can be measured using a 
photoelastic method [18] or a mechanical approach [15] to provide validation to the modelling 
approaches. The photoelastic illustration in Figure 1 (a) is adapted from [19]. 
At the activity level, there are three processes where Sensitivity Analysis (SA), Verification and 
Validation (V&V) and Error Function evaluation (EF) are performed in this case study as shown in 
Figure 1 (a). The activity level processes are typically encountered in design evaluations and may be 
performed in different order or combination. These processes are considered to be transactional 
processes where the constituent activities for achieving the objectives are consistent and known. The 
SA process aims to determine the percentage contribution of the variation is each design parameter to 
the variation in the performance parameters, i.e. P and TH. The V&V process aims to establish that 
modelling was performed correctly and that models are a valid representation of the real 
systems/mechanisms. The EF process aims to characterise the discrepancies between results from 
various modelling and experimental approaches. Tables and graphs for the results are shown in Figure 
1 (b). Reliability analysis could have been performed in this case study to evaluate the probability of 
failure from the performance distributions but is not elaborated for conciseness. 
Several important characteristics of this case study are noted:  
• Specific to this case study, although undesirable for economic reasons, a selective assembly 

procedure was needed due to a manufacturing process that resulted in large variation in the 
tolerances of the shaft and hub diameters. Statistically, the selective assembly process  
introduces some correlation between ds and dH, which reduces the variability in γ (ds – dH). This



ICED’07/136     6 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500

Torque (Nm)

P
ro

ba
bi

lit
y 

(%
)

E f rs RH LH rH P
217080 0.1606 11.0407 29.9562 15.1680 11.0262 122.909
209938 0.1173 11.0392 29.9813 15.2561 11.0233 129.807
212781 0.1847 11.0480 29.9729 15.2439 11.0305 145.617
218821 0.1286 11.0303 29.9285 15.2616 11.0246 48.556
221693 0.1330 11.0460 29.9356 15.1994 11.0316 124.212
220383 0.1591 11.0373 29.9432 15.1473 11.0274 85.172
215880 0.1111 11.0315 29.9538 15.2501 11.0224 76.382
223879 0.1463 11.0366 29.9632 15.2353 11.0217 130.120
229979 0.1483 11.0392 29.9517 15.1860 11.0207 165.995

Sensitivity 
Analysis

Contact 
Pressure Model

Holding 
Torque Model

Activity Level

Transfer Function Level

 

�
�

�

�

�
�

�

�

��
�

	



�

�
−=

2

1
2 H

s

s D
d

d
E

P
γ

 
HsH LfPdT 2

2
π=

P TH

DH

γ
dH

ds

LH

Design Variables Sample size Fitted distributions Equivalent normal 
parameters Units 

f 26 

3 parameter Weibull 
θ = 0.1524 
λ = 1.4645 
x0 = 0.1016 

µ = 0.1467 
σ = 0.0323 

- 

LH 27 

Minimum extreme 
value 

θ = 0.0442 
ν = 15.2164 

µ = 15.1909 
σ = 0.0567 

mm 

 

Design Variables Sample size Fitted distributions Equivalent normal 
parameters Units 

E 10 

Minimum extreme 
value 

θ = 6.0290 
ν = 221.6324 

µ = 218.1523 
σ = 7.7325 

GPa 

ds 27 

3 parameter Weibull 
θ = 22.0869 
λ = 4.0606 

x0 = 22.0419 

µ = 22.0826 
σ = 0.0111 

mm 

dH 27 

Maximum extreme 
value 

θ = 0.0071 
ν = 22.0518 

µ = 22.0559 
σ = 0.0091 

mm 

γ 
(selective 
assembly) 

27 

3-Parameter Weibull 
θ = 0.0292 
λ = 7.5679 

x0 = -0.0100 

µ = 0.0267  
σ = 0.0056 

mm 

DH 27 

Maximum extreme 
value 

θ = 0.0334 
ν = 59.8944 

µ = 59.9137 
σ = 0.0428 

mm 

 

f

97.22

2.78 0.00 0.00
0

20

40

60

80

100

g E ds DH

%

γ ds
DH

51.07 48.92

0.01 0.00
0

20

40

60

80

100

f P LH ds

%

f LH ds

E

<input> <output> <input> <output>
<input>

<output>

Models

Input Parameters

<input>

<input>

Contact Pressure, P Holding Torque, TH

Photoelastic measurement of P 
[18]

Torsion in shrink-fit

Mechanical measurement of TH

Variance contribution on P Variance contribution on TH

PDF of P by Lamé

PDF of P by FE

FE model of 
failure in torsion

Design formula for 
failure in torsion

Lamé’s equation 
for radial pressure

FE model for 
radial pressure

Experiment
Design 
formula

Micro-mechanical

Summary of data (statistical parameters)

Summary of data (statistical parameters)

<source_model>

<data processing><data processing>

Raw data

Parameter Activity/Transfer Function Notations

Micro-mechanical model 
for failure in torsion

Verification & 
Validation

Performance 
Parameters from 
various Models

Experiments

<input>

<input>

Error Function <output>

<output>

<source_model>

<source_model>

<input>

<source_data>

<source_data>

<data processing>

<data processing>

Performance parameters Models/error functions EF1 (ϕϕϕϕ) EF2 (εεεε) 
Contact pressure Lamé’s – Finite element -0.06 0.97 

Design formula – Experiment  0.48 0.80 Holding torque 
Micro-mechanical – Experiment  0.15 0.98 

 

PDFs of TH

(a)

(c)

(b)

EF (ϕ, ε) = f(φ1, φ2, δ1, δ2)  

 
( )



�
�

=
−=

21
2

221
1

/���:EF
/�:EF φφφ

s

H

s

H

s

H

d
L

f
d
L

Pd
T

�
�

�
�
�

�
+≈ 2604.14

8
0256.1

3

 

 

Figure 1. Application of framework to shrink-fit case study 
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information needs to be carefully documented in the analysis as it has significant effect on the 
variations in P and TH. 

• Large variation in TH is observed from the Probability Density Functions (PDFs), which vary 
considerably from 0 to 500 N.m despite selective assembly being carried out. The variation can 
be described by Coefficient of Variation (Cv) obtained from dividing standard deviation, σ with 
mean, µ of a normal PDF. The Cv values for the PDFs for TH are found to be between 20 to 
30%. This criterion may prompt the designer to consider ways of quality control (e.g. additional 
grinding process) for reducing the performance variation in shrink-fits produced. The modelling 
predictions from micro-mechanical and design formula models also show systematic errors of 
varying magnitudes (refer to Table 2 in section 4). 

• As observed in the Pareto plots of variance contribution, the sensitivity results indicate both P 
and f as the main source of variation in TH, and the variation in P is mainly due to the variation 
in γ, (and in turn diameters, ds and dH). This observation may prompt the engineers to carry out 
further measurements of f and investigate its dependency on other variables such as contact 
pressure and diameters when conditions at the interface change. When new data becomes 
available in the second iteration, data used for deriving the statistical information needs to be 
updated to reflect present understanding. 

• There is a significant reuse of data and models in the case study. This practice is not atypical in 
design evaluations as observed from other case studies in literature [12]. In this case study, in 
verifying the contact pressure and holding torque models, the same set of data for the design 
variables and parameters are used. In addition, the same geometrical model for the shaft and hub 
are used in calculation of both the contact pressure and holding torque using finite element 
modelling. The initial and boundary conditions as well as the element types used in these 
models however were different. 

• The relationship between derived and original data is not immediately identifiable. For example, 
error functions are derived from data generated in the V&V process upstream but the links to 
the original data is not apparent.  

• During the design of shrink-fits, data and information for dimensional tolerances and variations 
can be drawn from external sources like the ISO Standards for Limits and Fits and the Process 
Capability (Cp) [17]. Such data may be contained within standard documentation or proprietary 
databases. The reference to these data sources are often lost, in many cases are difficult to 
locate.  

Due to space constraints, the issues and observations have been elaborated for only one case study in 
this paper. The above observations are generic to a range of design evaluations collated in [12]. For 
transactional processes where a number of activities and the objectives are known and identifiable, the 
next section discusses the potential benefits that might accrue from the development of an 
environment based on the proposed framework. 

�� 
�������	
�

The framework has been applied to a case study with respect to managing knowledge of uncertainty in 
design evaluations. A number of scenarios are now discussed to project how such an approach can 
manage uncertainty in design evaluation more effectively. 
1. The case study presented in this paper is atypical, in that the performance parameter is described 

probabilistically, and statistical evidence is also available. This correlation allows designers to 
infer the error functions with highest confidence, i.e. first and second moment errors can be 
characterised precisely. However, the classification also allows for less precise description of 
uncertainty to be incorporated through deterministic and interval values. These cases can be 
associated with one of the six confidence scales defined in the classification scheme. From the 
definition of error functions in Figure 1 (a), where EF1 denotes the error function accounting for 
first moment error (or systematic component) and EF2 denotes the error function accounting for 
second moment error (or random component), we can see that the errors are minimum when: 

ϕ → 0 and ε → 1 (1) 

The error functions for both contact pressure and holding torque are summarised in Table 2.  
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Table 2. Error functions for contact pressure and holding torque 

Performance parameters Models/error functions EF1 (ϕϕϕϕ) EF2 (εεεε) 
Contact pressure Lamé’s – Finite element† -0.06 0.97 

Design formula – Experiment  0.48 0.80 Holding torque 
Micro-mechanical – Experiment  0.15 0.98 

 
Knowledge of these errors can inform the designer to be more or less conservative in making 
decisions during concessions. In practice, if large numbers of instances of simulation and 
observation data can be recorded in a structured manner and attributed to specific elements/parts 
of the process model, a machine learning approach might be employed for updating error more 
realistically. The error model can then be incorporated into future design activities to reflect an 
updated understanding of the problem (modelling capability, concept etc.). 

2. When the performance of the design (outcome of a process) is observed, evidence of the error 
for that process becomes available. The network of activities can be used to infer unknown 
uncertainties, sensitivities and errors from indirect evidence by allowing a visualisation of the 
process. In the case study, the prediction of the holding capacity of shrink-fits consists of a two-
stage analysis process (at transfer function level). The contact pressure is first established, then 
this information feeds into a holding torque model for final performance evaluation. From 
Figure 2, we can deduce that the confidence in the estimation of errors in P and TH are both high 
since the knowledge of uncertainty is precise in this case study (i.e. all the performance 
parameters can be described probabilistically). This is indicated by the highest level of 
confidence from the six graduated gray scale in Figure 2 .  
From Table 2, the contact pressure models from the closed formula and finite element 
modelling have been verified satisfactorily (relatively small errors) but there are moderate errors 
in the estimation of holding torque even in the case of micro-mechanical modelling (a more 
detailed model). From the network of activities, we can infer the source of error in the 
prediction of holding torque to either come from the uncertainty in the holding torque models or 
the design variable f and LH. This allows for visualisation of the uncertainties and errors (Figure 
2), particularly if this is only part of a more complex process. The error functions and 
confidence can be marked-up on the results to allow for more transparent and objective 
consideration of risks during decision-making. 
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Figure 2. Visualisation of errors in shrink-fit modelling‡  

 
3. The case study presents a single realisation in the design space, where potentially a large 

number of parametric design solutions may exist. If the framework is adopted consistently over 
many variants (e.g. in parametric design), response surfaces for the performance can be built. 
The functions can be used for interpolating between design cases especially in early phases of 

                                                      
† For discussion purposes, we assume finite element provides a more accurate estimation of contact pressure than 
Lame’s equation. 
‡ Error scales based on deviation from ϕ = 0 and ε = 1. 
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design. For instance, shrink-fits of various sizes can be obtained through the parameterization of 
diameters of the shaft and hub. In a similar manner, a parametric error model can be developed 
if evidence for many parameterisation is systematically collected. This way, we can start to 
build up knowledge of epistemic uncertainty (especially in model uncertainty which is usually 
difficult to characterise). In cases where large numbers of parametric design instances are 
observed, the parametric error models can be built and used in early phases to adjust the 
predictions using relatively simpler and inexpensive models. Reducing modelling errors in early 
design process (where highest level of uncertainty in models and data is present) can avoid 
costly iterations downstream and reduce the risks of selecting sub-optimal design concepts. 

4. As observed in the case study, automatic data extraction and processing modules can be 
developed in accordance with the schema that allows for each entity in the framework to be 
computer-identifiable. For example, the data points for each performance parameter may need 
to be processed by a statistical processor to fit and display PDFs. Conversely, from the tabulated 
statistical parameters, a sampling script can be invoked to feed pseudo-random numbers for 
probabilistic designing (i.e. Monte Carlo approach). If for example, new data may be added to 
the initial sample set after SA is performed as well as in the case when the data becomes 
obsolete and replaced, the process can be executed to dynamically reflect the changes (updating 
knowledge). This capability requires that the data can be stored in a non-proprietary format and 
processed separately by tools/programs for specific purposes. Further to this, the data 
processing module can be inferred from the activity level process. In the case of SA, a numerical 
differentiation algorithm can be invoked to obtain the sensitivity coefficient (from gradient of 
the function).  

A framework for managing uncertainty to enhance reuse of design analysis has been discussed through 
a case study in shrink-fit design. It is envisaged that such structured approach can allow for 
uncertainties and errors in a complex analytical process to be made more explicit to the benefits of 
decision-makers. In particular, the framework may provide a common reference to exchange uncertain 
data with more confidence within a collaborative environment. This way, potential risks associated 
with uncertainties can be taken into account in an informed manner. Furthermore, the modular process 
model representation also enhances our ability to reuse the data, models and processes, if the rich 
contexts surrounding the analytical processes can be captured effectively through a unified framework.  

�� �	
�����	
��

Uncertainty in engineering design is inevitable because of its very nature – seeking to find a solution 
to an abstract and incompletely understood problem. However, uncertainty in design evaluation can be 
managed to improve confidence through a more robust strategy for capturing, sharing and reusing 
information. This paper has presented a structured approach to managing uncertainties in engineering 
design using a systematic and formal representation based on a process model. The process model 
framework is used to describe activities and information flows, so that an initially incomplete 
understanding can be updated when new evidence becomes available. The benefits that can accrue 
from the theoretical framework proposed in terms of managing uncertainty in design evaluations also 
include the population of error functions, inference of uncertainty and errors in complex simulation 
processes and parametric modelling.  
Ultimately the improvement to design documentation may aid revision of design episodes for 
identification of decision rationale and assessment of decision impacts more quickly. The knowledge 
and insights can be used to evaluate confidence and risks in modelling capability more upfront in the 
design process and to support selection of design tools and techniques and optimisation of resource 
allocation in simulation-based design. Further work involves the development of an activity taxonomy 
for the framework to be used effectively and development of approaches for integrated product, 
process and rationale representations in the framework under the Immortal Information and Through-
life Knowledge Management project [20]. 
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