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ABSTRACT 
Collaborative product development is a method for reducing costs, but there is a risk of severe 

obstacles during the product documentation exchange. Product documentation for configurable 

products describes how parts can be combined with so-called ‘configuration rules’. This paper is based 

on a case study of the configuration rule exchange in a collaboration project between two automotive 

firms. The research approach was to create information and process models for the configuration rule 

exchange, and then to discuss obstacles and improvements. The results showed that the main obstacles 

were the difference in authoring methods, causing difficulties in detecting changes as well as a time-

consuming reformulation of configuration rules. An implemented algorithm addressing the change 

detection serves its purpose to demonstrate the effort required to overcome this obstacle during a 

configuration rule exchange. The identified obstacles, and the effort to overcome them, are crucial to 

understand in order to motivate and direct further research of improved configuration rule exchange 

support. 
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1 INTRODUCTION 

Collaborative product development is a means for reducing development time and lowering 

organizational risk (Bruce et al., 1995). In collaborative product development for configurable 

products, the need for exchanging product data goes beyond single parts and assemblies, and also has 

to include ‘configuration rules’. Configurable products, such as cars, are defined by a set of features, 

e.g. ‘engine size 1.8 liters’ and ‘exterior color red’. The configuration rules are logic expressions that 

control the selection of feature variants, for example that the ‘exterior color red’ should not be possible 

to choose by customers who also want ‘engine size 1.8 liters’.  

Three approaches to product data exchange are known in the literature: (1) to use a neutral file, (2) to 

remodel the product data, or (3) to use a data instance mapping (Markson, 2007). The neutral file 

approach involves a translation from the native format to a neutral file format and then a translation 

again to the receiving system (Pratt, 2001). One well-known product information model standard, first 

published in 1994, using the neutral file approach is the STandard for Exchange of Product model data 

(STEP) (ISO, 1994). The use of a standardized information model can be efficient when there are 

available translators, as is commonly the case for part geometries. When there are no translators, as for 

configuration rules, they need to be developed for the specific exchange and may be difficult to 

motivate financially for a single case. Consequently, there is a lack of industrial validation for neutral 

file formats for configuration rules (Viel, 2003; Hirel and Hug, 2009). The second exchange approach 

is to remodel the data. This approach means that one of the companies needs to modify its 

configuration information model in order to be able to exchange the configuration rules. This second 

approach is too expensive for collaborative product development, as a remodeling affects downstream 

systems, e.g. manufacturing. The third approach, the data instance mapping then needs to be the 

approach applied in practice for exchange of configuration rules. The data instance mapping uses the 

data instances from Company A to map data instances at Company B, see Figure 1. A mapping is 

‘one-to-one’ if every data instance from Company B is mapped by at most one data instance of 

Company A (Zeuthen, 1870). As shown in the figure, the mapping is instead of the type ‘onto’ if a 

data instance at Company B is mapped by more than one data instance from Company A (MacDuffee, 

1940). The data instance mapping is an exchange approach where little research has been conducted. 

Company A Company B  Company A Company B 

‘red’ AND ‘sport’ ‘red’ AND ‘sport’  ‘red’ AND ‘sport’ 
‘red’ AND (‘sport’ OR ‘classic’)  

‘red’ AND ‘classic’ ‘red’ AND ‘classic’  ‘red’ AND ‘classic’  

Figure 1. Data instance mappings illustrating left) ‘one-to-one’ and right) ‘onto’.  

For configuration rules, one-to-one mappings have the benefit that a single configuration rule at 

company A is equivalent to a single configuration rule at company B. In onto mappings, a 

reformulation of the configuration rules needs to take place as more than one configuration rule has to 

be equivalent to a single configuration rule. ‘Onto’ mappings are probable during configuration rule 

exchanges, as companies have specific needs and practice for authoring configuration rules (Tidstam 

and Malmqvist, 2011).  

During an inter-organizational exchange of product data, it is common with product data exchange 

issues (Domazet et al., 2000). There are exchange issues independent on information models, such as 

correctness, completeness, consistency, coverage and currentness (Killick, 1993). That type of 

exchange issues is however not studied in the present study, as it is assumed that the activities to 

assure high quality data have already taken place before the exchange. This is a recommended practice 

from (Chow and McElroy, 2002). Other exchange issues are described in (Fang et al., 1991; Naiman 

and Ouksel, 1995) as three aspects of information model comparability: (1) ‘naming’, refers to class, 

attribute or instance name issues, e.g. synonyms, (2) ‘abstraction’ refers to relationships between 

classes, e.g. ‘x’ is a generalization of ‘y’, and (3) ‘heterogeneity level’ is naming/abstraction conflicts 

on classes, attributes or instance levels. Another exchange issue that is mentioned in (Fang et al., 1991) 

is differences in IT systems, as for example how configuration rules are visualized in the two in-house 

developed IT systems in the present study. Some research on information exchange issues has thus 

been carried out, but, to the authors’ knowledge, no study has specifically focused on an exchange of 

configuration rules. In order to identify obstacles during a configuration rule exchange, this paper will 

describe the exchange process in detail. The following research questions have been addressed:  
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RQ1: What does an exchange process for product configuration rules between collaborating 

companies look like? 

RQ2: Which configuration rule exchange obstacles between collaborating companies are identified? 

RQ3: How can the exchange of configuration rules be improved? 

The remaining parts of the paper are organized as follows: In Section 2 the research approach is 

described; Section 3 presents the results; Section 4 discusses the results; and in Section 5 the 

conclusions are stated. Section 6, finally, outlines the future work.  

2 RESEARCH CONTEXT, QUESTION AND METHOD 

The research process consisted of three phases: (1) analysis, (2) development and (3) testing, see 

Figure 2. The analysis phase included a set of parallel activities: creation of configuration information 

models, creation of exchange process model, as well as an analysis of automation potential. An 

algorithm development was iterated with a validation during the testing phase. Results addressing the 

three research questions are also listed in the figure.  

 

Figure 2. Research activities and results with references to research questions.  

3 RESULTS 

The two collaborating automotive manufacturing firms that are involved in this study, henceforth 

called Alpha and Beta, are two major European manufacturing firms selling hundreds of thousands of 

cars per year. Consequently, these two companies have developed PDM systems that support their 

specific business needs for configuration rules. Alpha has the development responsibility during the 

studied collaboration project, and it is Alpha’s responsibility to ensure that the exchanged 

configuration rule set is correct and complete. Beta receives the developed configuration rules, but has 

to translate them into its own language in order to be able to sell and manufacture the vehicle. The 

result section is structured in three subsections: 3.1 Analysis, 3.2 Development and 3.3 Testing. 

3.1  Analysis 
The analysis phase begins with describing Alpha’s and Beta’s information models, and then continues 

with the exchange process description, and finally the analysis of automation potential.  

Configuration information models at Alpha and Beta  

Alpha’s configuration information model is shown in Figure 3, and Beta’s configuration information 

model in Figure 4. Alpha’s configuration information model contains a ‘configuration rule matrix’. 

Such matrices show allowed and restricted combinations of feature variants with configuration rule 

values {S, D, O, -}, where ‘S’ = systematic, ‘D’ = default, ‘O’ = optional, and ‘–’ = restricted. The 

systematic value indicates that it is the only allowed combination. The default value indicates a default 

combination among more several optional combinations. The restricted values indicate which 

combinations that are not allowed to be selected.  

A configuration rule matrix is a user generated view based on a selection of ‘minor’ feature families, 

whose related major feature families are imported due to the minor to major relation. The user then 

authors configuration rules by assigning configuration rule values {S, D, O}. If a minor to major 

relation is modified, all configuration rule matrices with the minor feature family will be modified. 
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Figure 3. Configuration information model for Alpha in OMG UML notation (ISO/IEC, 2011). 

Beta’s configuration information model is shown in Figure 4. The configuration rules are grouped into 

‘positions’ and ‘position variants’. Position variants are used instead of OR operators, but also divide a 

configuration rule into two lines for readability reasons. The logic expression of a single configuration 

rule also uses operators such as IF-THEN, AND etc. From the company guidelines at Beta, it was 

found that the configuration rules are encouraged to be positive (not using the NOT operator) and 

short, but may admittedly become very long because of the OR operator and brackets.  

 

Figure 4. Beta’s configuration information model in OMG UML notation (ISO/IEC, 2011). 

Comparison of configuration information models 

It is only possible to ‘onto’ map some of Alpha’s and Beta’s classes in the configuration information 

models: Alphas’ ‘major’ and ‘minor’ feature family with Beta’s feature family, as well as Alpha’s 

‘major’ and ‘minor’ feature variant with Beta’s feature variant. The remaining classes at Alpha and 

Beta describe configuration rules. The mapping between the configuration rule classes is more 

difficult, as there are fundamental differences in Alpha’s configuration rule matrix and Beta’s list of 

configuration rules. The most obvious heterogeneity is, similar to programming, the explicit and 
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relatively rich Boolean algebra at Beta, which are implicit in Alpha’s configuration rule matrices. The 

consequences of this heterogeneity will be further discussed in the process analysis. 

All comparability issues between information models categorized by Fang et al. (1991) could be 

exemplified based on the present study’s findings:  

- Abstraction, heterogeneity on class level: There is a distinction of two types of feature 

families/variants (‘major’ and ‘minor’) at Alpha which does not exist at Beta.  

- Naming, heterogeneity on instance level: There is a product model family/variant in Beta’s 

configuration information model, which corresponds to one of the major feature families/variants at 

Alpha. For the configuration rules, Beta has numbered ‘positions’ for grouping the configuration 

rules, while Alpha creates groups with the ‘configuration rule matrix’.  

- Naming, heterogeneity on attribute level: The configuration rule class ‘Exclusion/Inclusion’ at Beta 

could be mapped to attribute values {S, D, O, -} for the configuration rule matrix class at Alpha.   

The configuration information models also have heterogeneous scopes of the information models 

because of the distinction between ‘D’ and ‘O’ at Alpha which lack correspondence at Beta.  

The process for the configuration rule exchange is described in the next section.  

Process description of configuration rule exchange 

The exchange process model is shown in Figure 5. When there is a new version of configuration rule 

matrices at Alpha, a file with those is created and exported to Beta. For the collaboration project, Beta 

created a new ‘integration system’ which is used to visualize configuration rule matrices as well as to 

map feature families and variants between Alpha and Beta. A configuration rule specialist manually 

inspects the configuration rule matrices and detects changes. Possibly new minor/major feature 

families/variants at Alpha have to be matched with feature families/variants at Beta. Then 

configuration rules are authored, sometimes requiring a reformulation in order to follow Beta’s 

company guidelines. The process activities (A3-A5) will now be discussed in more detail:  

 

Figure 5. Exchange process for configuration rules from Alpha to Beta. 
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A3: Detect and color code change. In the present study, Beta’s configuration rule specialist uses three 

different colors: blue cells indicate new, red indicate deleted and purple indicate modified data 

instances.  

A4: Update data instance mapping. New feature families/variants from Alpha are interpreted and 

matched with feature families/variants at Beta. 

A5: Author and document configuration rules. The authoring of configuration rules is done by 

analyzing configuration rule matrices from Alpha when the feature families/variants are expressed 

with feature families/variants from Beta. The authored configuration rules have to be documented into 

Beta’s PDM backbone system, which is done manually today. Unnecessary work-load for this activity 

is when Alpha changes the list of minor feature families for creating a configuration rule matrix 

without doing any changes in the configuration rule values. This causes a major reformulation of 

configuration rules at Alpha. This issue is related to the visualization methods used for documenting 

the configuration rules. 

 The next section presents an evaluation of the automation potential for these three process activities.   

Evaluation of automation potential 

Looking at the exchange process in Figure 5, there are three process activities that are interesting to 

study from a configuration rule exchange perspective: A3) the detection of changes in the 

configuration rule matrices, A4) the update of data instance mapping tables, and A5) the authoring of 

configuration rules at Beta. The first step, the detection of changes, was found to be the best candidate 

for automation: 

A3: Detect and color code changes. Alpha’s configuration rule matrix does not include any 

information about which configuration rule values that have changed. The detection of changes is a 

manual process where the user compares two computer screens with different versions of 

configuration rule matrices. By comparing the screens cell for cell, it is possible to detect the 

differences in the configuration rule matrices. This step seems to be a suitable candidate for 

automation, since it is a repetitive and time-consuming task. Evaluation: suitable for automation. 

A4: Update data instance mapping tables. The update of instance mapping tables has already been 

studied and found difficult to automate (Kementsietsidis et al., 2003). Consequently, there are 

according to Kementsietsidis et al. no tools facilitating the update of mapping tables. The difficulty to 

automate the update of data instance mapping tables was emphasized in the present study as several 

inter-organisational workshops had to discuss the naming conventions for feature families and 

variants. One real case example: is Alpha’s feature family ‘secondary color’ equal to Beta’s ‘upper 

color’ or ‘lower color’? Evaluation: difficult to automate. 

A5: Author and document configuration rules. The last process activity to be discussed is the 

automated authoring of configuration rules. The easiest automation approach would be to create a one-

to-one mapping between configuration rules at Alpha and Beta. This is however creating far more 

(~100 000) string-based configuration rules at Beta than what is normally authored in a car project. 

The possibility to manually check these configuration rules becomes limited for the configuration rule 

specialist who has work practices adapted to much fewer configuration rules. The manual inspection is 

an important task, as when mistakes are made, the mistake has to be possible to be tracked. To reduce 

the number of list-based configuration rules, Beta has chosen to apply their authoring guidelines. 

Consequently, a re-formulation is required from the configuration rule matrices at Alpha to the much 

longer string-based configuration rules used at Beta. This is a re-formulation that has to mimic the 

configuration rule specialist’s preferences of how to author configuration rules. In order to do that an 

in-depth study has to be conducted. Evaluation: difficult to automate but worthy of future examination. 

Summary of analysis phase 

The main obstacles identified during the analysis phase are mapping between data instances as well as 

heterogeneity in visualization methods: 

- Mapping of data instances: Different naming of data instances from feature families and feature 

variants causes a time-consuming update of one-to-one mapping tables. Update of these mapping 

tables is known to be difficult to automate, and an improved exchange process should therefore 

address other exchange issues. Another type of mapping, which is rather unknown in the research 

literature, is the onto mapping of configuration rules. This onto mapping causes a re-formulation of 

configuration rules, which is difficult but possible to be automated. 
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- Visualization methods: Process activities where heterogeneity in visualization methods are causing 

issues are the detection of changes and the authoring of configuration rules. Both of these process 

activities are negatively influenced by the fact that the configuration rule matrices are only user 

generated ‘views’. Any view can be generated, each requiring a unique set of list-based configuration 

rules to be authored. This complicates change detection, as it becomes difficult to know if it is the 

view or the configuration rule values that have changed. When the major feature families in the view 

changes, the complete list of configuration rules from that configuration rule matrix has to be re-

formulated (updated). It is therefore in Beta’s interest to automate both the change detection and the 

authoring of configuration rules.  

3.2  Development  
The development phase consisted of two sections: task analysis as well as the algorithm development. 

Automation tasks 

There are two main tasks for how to support the configuration rule specialist during the exchange of 

configuration rules: Task A – Automated detection and coloring of configuration rule matrix changes, 

and Task B – Automated authoring of configuration rules.  

The number of errors is the most important criteria, and the selection of which task to develop a 

support for, should be based on this. Task A was selected due to its convincing effect on reducing the 

number of errors. Task B with the automatic authoring of configuration rules would give better time-

savings, but is more complicated. Task B is therefore left to future work. 

Algorithm development 

Task A (automated coloring of configuration rule matrix changes) is here described in a step-by-step 

algorithm, which is also shown in Figure 6. 

Step 1: Count feature families (N) and feature variants (n) in a new version of configuration rule 

matrix CRMn, Count feature families (P) and feature variants (p) in a previous version of configuration 

rule matrix CRMp.  

Step 2: Write a copy of CRMn  into a new configuration rule matrix CRMn+p.  

Step 3: Compare data instances in CRMn with CRMp: feature families, feature variants and 

configuration rule values {S, O, D, -}. 

 

Figure 6. Change detection algorithm described with a step-by-step flowchart.  

Step 4: Color new/deleted/modified values.  

 Step 4a: If new feature family or feature variant, color it blue in CRMn+p. 

 Step 4b: If deleted feature family or feature variant, write and color it red in CRMn+p. 

 Step 4c: If modified configuration rule value, color it purple in CRMn+p.  
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The algorithm was implemented as a Microsoft Excel macro in C#. The spreadsheets were imported 

from Beta’s integration system. The next section will compare the results of this implemented 

algorithm with the manual change detection process performed by the product structure specialist.  

3.3  Testing 
The validation of the software with the implemented algorithm for change detection was based on 

tests, inspection and reviews. The tests were based on two different inputs to the algorithm, and the 

outcome was compared to the manual process of change detection. The manual process was conducted 

by a configuration rule specialist. The inspection of the implemented algorithm was conducted with a 

programmer who was responsible of creating the production version of the software. The reviews were 

conducted together with the IT project manager who had been writing the requirement specification 

for the integration system, and also the person who had assumed that it was too complicated to create a 

change detection algorithm. Both the programmer and the IT project manager accepted the prototype 

software and work started to develop the production code that would be a functionality of the 

integration system. The remaining technique to be discussed is the validation tests. There were two 

evaluations of the algorithm: Test 1 and Test 2, see Table 1. These evaluations were performed on 

complete version collections of configuration rule matrices, which were 16 configuration rule matrices 

for all tested version collections. The characterization of Test 1 was configuration rule matrices from 

early development of vehicles, and the most frequent changes were new/deleted feature 

families/variants. The characterization of Test 2 was configuration rule matrices from a more mature 

development of the vehicle, and the detected changes were dominated by modified configuration rule 

values.  

In Test 1, both the manual and automate process found 100% of the changes. In Test 2, the automated 

algorithm again found 100% of the changes, but the manual process only found 95%. The access to 

manual process data for Test 1 was limited to only after the documentation update to Beta’s PDM 

system, and the coloring had therefore been verified several times. The manual process data was for 

Test 2 possible to be accessed before the documentation update to Beta’s PDM system, and it therefore 

remained some verification of the coloring. All discrepancies were modified configuration rule values 

that had not been detected in the manual process. It was thereby discovered that this type of change is 

the most difficult to detect in the manual process.  

Table 1. Comparison between automated and manual process in two evaluation tests. 
 (‘CRM’ = configuration rule matrix, ‘del.’ = deleted, ‘mod.’ = modified) 

Test 

ID 

Test results (16 CRMn and 16 CRMp) Colored data instances Time [min] 

Major & 

minor feature 

families 

Major & 

minor feature 

variants 

Configuration rule 

values  

(D, S, O, -) 

Automated 

process 

Manual 

process 

Automated 

process 

Manual 

process 

New Del. New Del. New Del. Mod. 

Test 1 4 1 77 11 2955 1424 627 5099 100% 5 900 

Test 2 11 2 33 8 0 1490 1847 3391  95% 5 900 

The above tests show what the automation is essential to secure the quality of the configuration rules. 

In addition, the algorithm saves time. The process from detection of changes until and including 

documentation in Beta’s PDM backbone system takes about 100 working hours. The time spent for the 

manual detection and color coding of configuration rule matrix changes is 15 hours of the 100 working 

hours, which would with the automation suggested in this paper be reduced to few minutes. Also, from 

a quality point of view, the change detection algorithm is fundamental for getting it right the first time 

without iterating verification of the configuration rules.  

4 DISCUSSION  

This section will go through the research questions and discuss their answers, and discuss the results’ 

generalization. 
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4.1  Answering research questions 
RQ1: What does an exchange process for product configuration rules between collaborating 

companies look like? 

The exchange process for configuration rules in this paper was taking place between Alpha and Beta. 

Alpha has the responsibility to export correct and complete configuration rules, but in order to update 

Beta’s PDM system there is a need to detect changes, update a one-to-one data instance mapping table, 

as well as author configuration rules. Beta has developed a separate integration system to support the 

configuration rule exchange process. This integration system contains the one-to-one data instance 

matching table and a visualization of Alpha’s configuration rule matrices.  

RQ2: Which configuration rule exchange obstacles between collaborating companies are identified? 

During the exchange process between Alpha and Beta there are several kinds of data heterogeneity, 

e.g. different naming of data instances and different scopes of information models. The most 

challenging heterogeneity was however the heterogeneity in visualization methods. Alpha uses 

configuration rule matrices, which after the exchange has to be translated to configuration rule lists at 

Beta. This heterogeneity affects how configuration rules are authored, and is what causes the 

reformulation of configuration rules. Generally speaking, visualization method heterogeneity is the 

most important criteria when evaluating the effort required for an exchange of configuration rules. It is 

not the information modes which is the main obstacle, which could have been assumed based on 

previous comprehensive research work on information models. The visualization method 

heterogeneity causes major re-formulations of configuration rules at Beta from minor changes at 

Alpha. Another implication is the change management. The change management has been identified as 

an issue during product data exchange in (Jokinen et al., 2008).  

RQ3: How can the exchange of configuration rules be improved? 

Two main possibilities to automate process activities during a configuration rule exchange is an 

authoring of configuration rules, as well as change detection. More concretely, an algorithm should 

either address the 1) automated authoring of list-based configuration rules from a configuration rule 

matrix 2) the automated detection and color coding of configuration rule matrix changes. The 

algorithm that was developed in this paper concerns the later. The algorithm works for changes in 

configuration rule matrices in general, not only at Alpha. Future work could develop the algorithm 

further and also include the automated authoring of configuration rules.  

4.2 Generalization 
The algorithm developed in this paper works for configuration rule matrices. The applicability of the 

algorithm is therefore to companies that have a matrix-based visualization of configuration rules. 

Another application area is during collaboration projects in general. Beta’s product structure specialists 

consider their list-based visualization unreadable for product structure specialists from other 

companies. They therefore would like to use a matrix-based visualization during coming future 

collaboration projects, with the in this paper developed algorithm as a PDM independent method. 

The exchange process found during this study is based on collaboration between two companies. The 

use of neutral file formats requires a translation from the sender to the neutral file format, and then a 

translation again between the neutral file format to the receiver. If more companies would have been 

involved in the exchange process, it is possible that a neutral file format for the exchange had been 

used as well as that automated translators would have been developed.   

5 CONCLUSIONS AND FUTURE WORK 

The configuration rule exchange is a process that has been shown to need to detect changes, map data 

instance as well as re-formulate configuration rules. Several types of information model heterogeneity 

could be identified, but this heterogeneity was however not identified as a major issue. It was instead 

the visualization method heterogeneity that caused the most challenging issues during the 

configuration rule exchange. For example, Alpha’s PDM system cannot guarantee that a collection of 

configuration rule matrices contains all feature families as those are user-generated views and not 

verified to be a complete data set. The conclusion is that tools that are working well for documenting 

configuration rules within a company do not necessarily suffice between collaborating companies. For 
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example, the visualization method heterogeneity caused difficulties for the change management. The 

algorithm implemented for this study serves as an example of what is required to overcome the issue 

of visualization method heterogeneity. Future work should address issues identified in the present 

study in order to validate the generalizations and extend the knowledge of configuration rule exchange 

issues. 
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