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1. Introduction
The development and application of freshwater and marine areas is becoming increasingly extensive.
Owing to the special working requirements of water, most water operations need to be accomplished
by ships. Unmanned surface vehicles (USVs), with the advantages of flexible controllability, strong
autonomy and field operation, have been widely applied in the civil and military fields, such as maritime
cruise ships, emergency rescue activities, lake patrols and hydrological monitoring (Thomas et al., 2008;
Liu et al., 2015; Nad et al., 2015; Nikola et al., 2015; Liu and Bucknall, 2016; Ma et al., 2016).
In order to guide a USV through a cluttered environment, planning a high-quality and collision-free
path is a critical part during the USV’s voyage (Perera et al., 2015). Particularly, path planning is an
important technology in the application of the USV’s intelligent control and an indispensable part of
driverless technology, which not only determines the level of autonomy of the vehicle but also premises
the reliability of a mission and the likelihood of success. Fundamentally, USV path planning is a branch
of classical robot tracing, which mainly concerns two factors: the total path distance and safety (Zheng
et al., 2014). In addition, the quality of the generated trajectory, such as smoothness and continuity, also
needs to be taken into account (Smierzchalski, 1999).
Path planning technologies can be generally divided into two groups: the pre-generative approach (static
planning) and the reactive approach (dynamic planning) (Liu and Bucknall, 2015). Shi et al. (2019)
focused on the smoothness and seaworthiness properties of the path. A hybrid A* algorithm with motion
primitive constraints is proposed to generate an initial reference path. In order to optimise the path, a
number of computational intelligent algorithms have been applied. A genetic algorithm (GA) is used to
determine the optimised path for a USV under environmental loads in Kim et al. (2017). The optimised
paths are determined by numerical simulations. An approach of fast path planning based on a Voronoi
diagram and an improved GA has been proposed in Cao (2015). Furthermore, as a branch of intelligent

1



algorithms, the swarm intelligence algorithm plays an important role in research on USV global path
planning. Song et al. (2015) proposed a method for USV global path planning based on particle swarm
optimisation. By using typical obstacle modelling and the ant colony algorithm (ACO) for global path
planning, the USV global path was achieved in Wang and Chi (2016). Song (2014) improved the ACO-
based grid environment model for USV global path planning. Meanwhile, some works have been done
to combine various intelligent swarm algorithms for USV global path planning. For example, in Hu et al.
(2015), both GA and ACO are used to generate an initial pheromone distribution and carry out dynamic
integration of genetic operators, which not only can improve the convergence rate of the algorithm, but
also can solve the problem of precocious and poor global search ability.
The bacterial foraging optimisation (BFO) algorithm is a new bionic algorithm, which has become
another hotspot in the field of heuristic computing. Owing to its advantages, such as parallel searching
of the swarm intelligence algorithm and ease of jumping out from local minima, it has attracted more
interest. At present, BFO has been successfully applied in many fields, such as image processing (Mad-
hubanti and Chatterjee, 2008; Nandita et al., 2011; Rajinikanth and Couceiro, 2014), shop scheduling
(Wu et al., 2007; Raj and Priya, 2013; Cheng et al., 2015; Li et al., 2015; Zhao et al., 2015), robotics
(Jati et al., 2012; Mickael et al., 2012; Yang et al., 2012; Liang et al., 2013; Frantisek et al., 2014), etc.

1.1. Contributions of this paper
This paper proposes a more efficient grid partition-based hybrid BFO path planning method, named AS-
BFO, by integrating the A* algorithm to enhance the conventional BFO algorithm, thus solving the issue
of the generation of a discontinuous path. The main contributions of this paper are listed below:

(1) The bacterial foraging optimisation algorithm is improved and applied in USV global path
planning under the grid environment.

(2) The cost function of the A* algorithm is integrated into the tumble motion, which solves the
problem of repairing a discontinuous path.

(3) The relative optimal parameter combination is obtained and it makes the AS-BFO algorithm
run effectively in different working environments.

The rest of the paper is organised as follows. Section 2 describes the basic steps of the BFO. Section 3
establishes an environmental model and introduces the AS-BFO for our problem. At the same time, a
repellent signal is also released to warn other bacteria to keep a safe distance from itself. To gather infor-
mation, corresponding methodologies (early detection architecture) are used, in which the information
gathered through an intuitive and broad approach is assigned to previously defined subject areas. The
parameter combination simulation and the optimal parameter combination are obtained, and the sensi-
tivity analysis of AS-BFO parameters is carried out in Section 4. GA, ACO and AS-BFO are selected
for comparison in different experimental environments. Section 5 concludes this work.

2. Description of BFO
BFO is a global random searching algorithm, whose operation aims to simulate the physiological
behaviour of Escherichia coli bacterium in the process of foraging behaviour, the modelling iteration
producing the optimal solution. The cost function of the A* algorithm is integrated into the tumble
motion, which solves the problem of repairing a discontinuous path. The BFO consists of three principal
mechanisms to find the relative optimal solution: chemotaxis, reproduction and elimination–dispersal,
each of which is detailed below (Passino, 2002; Kushwaha et al., 2012; Hossain and Ferdous, 2015;
Zhao and Wang, 2015).
In biology, the movement of bacteria is called chemotactic behaviour, and there are two types of chemo-
taxis of bacteria: swim and tumble/rotate. The cost function of the A* algorithm is integrated into the
tumble motion, which solves the problem of repairing a discontinuous path. Swimming is the motion of
bacteria forwards along the same direction as the last stage; rotation is the bacteria staying in the same
position and rotating itself into a new direction. These two chemotactic operations guarantee that bacte-
ria search the problem space as well as avoid obstacles in the searching process. The new position of the
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bacteria after chemotaxis can be obtained by

θ
i( j,k, l) = θ

i( j + 1,k, l) +C(i)
∆(i)√

∆T(i)∆(i)
, (1)

where θ i( j,k, l) represents the bacterium i in the jth chemotaxis, kth reproduction and lth elimination–
dispersal step, C(i) denotes the size of chemotaxis during each swim or tumble, and ∆(i) is the direction
vector of the jth chemotactic step. Finally, ∆(i) is a random direction vector with a range of [−1,1].

Scanning is a validation activity. In the iPeM, validation is understood as a basic
activity of product engineering and is the only activity that generates knowledge. Scan-
ning is used to detect indicators for the future environment through comprehensive and
undirected screening if no or only very vague information regarding changes in future
development is available. To gather information, corresponding methodologies (early
detection architecture) are used, in which the information gathered through an intuitive
and broad approach is assigned to previously defined subject areas.

During cell-to-cell communication, when each bacterium moves, it releases attractant to signal other
bacteria to swarm towards it. At the same time, a repellent signal is also released to warn other bacteria
to keep a safe distance from itself. Such a communication mechanism is also simulated by representing
the combined cell-to-cell attraction and repulsion, which can be expressed by
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where Ji
cc(θ

i,θ) denotes the object function value, which represents a time-varying objective function, S
represents the total number of bacteria, D is the number of variables to be optimised, and dattract, ωattract,
hrepellant and ωrepellant are coefficients representing the attractive depth, attractive width, repellent height
and repellent width, respectively.

2.1. Reproduction
After the chemotaxis, the health status of each bacterium is determined by the sum of the step fitness,
i.e. ∑

Nc
j=1 J(i, j,k, l), where Nc is the maximum step in a chemotaxis process. Based on their health status

(fitness values), all bacteria are sorted.1

2.2. Elimination–dispersal
In order to avoid the bacteria becoming stuck around the initial positions or local optima, the
elimination–dispersal process is introduced in the BFO. In the elimination–dispersal process, some
bacteria are selected, based on a probability Ped , to be moved to another position within the environment.

3. AS-BFO for USV global path planning
The proposed AS-BFO method is detailed in this section. In particular, given a known map with a
number of obstacles, the proposed algorithm first grid partitions the given map into an n × n grid envi-
ronment. The parameters of AS-BFO are tightly coupled. The selection of the parameters directly affects
the performance of the algorithm. Then, the conventional BFO algorithm is applied to find the optimal
path. During the chemotaxis operations of the BFO, each step will be monitored to check whether or not

1 In the reproduction step, the half of the bacteria with higher fitness values survive and the others are eliminated.
And then each surviving bacterium splits into two identical ones. The reproduction process keeps the population
of bacteria constant.
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the tumbled node is continuous with the previous node as well as the following node. The parameters
of AS-BFO are tightly coupled. The selection of the parameters directly affects the performance of the
algorithm. If any discontinuous path is identified, the A* algorithm is employed to repair the discontin-
uous part. This process will be applied until an optimal solution is found. The final optimal solution will
be the best path for the given map. The flowchart of the proposed method is shown in Figure 1, and the
key components are detailed below.

(a) (b)

Figure 1. Flowchart of AS-BFO

The grid method is an effective modelling method. The method is easy to construct, modify and simulate
the geographical environment. The grid map not only can simulate relatively accurate environmental
information for the USV, but also can provide simulation environments of different sizes and complexity
for algorithm experiments. This provides a good basis for analysing the performance of the algorithm.2
Electronic charts can provide map information for USVs, but such maps are less flexible than grid
maps. The parameters of AS-BFO are tightly coupled. These two chemotactic operations guarantee that
bacteria search the problem space as well as avoid obstacles in the searching process. The selection of
the parameters directly affects the performance of the algorithm. A cellular grid map is also applied to
the study of global path planning. However, in cellular grid maps, the minimum steering angle can only
reach 60◦, so the grid map has an advantage in steering angle. USVs usually work in vast stretches of
water.
The work environment can be considered as a two-dimensional space with static obstacles. Therefore,
the working environment of a USV can be gridded. In the general analysis, if obstacles occupy less than
one grid, it will be considered as one whole grid (Yang et al., 2012). Thus, it will establish a one-to-one
correspondence between the grid number and the two-dimensional coordinates. These two chemotactic
operations guarantee that bacteria search the problem space as well as avoid obstacles in the searching
process. The data structure of the algorithm is a nine-square graph centred on the current node, with a
total of eight adjacent nodes. The following node must be chosen from these eight neighbours. In the
n × n grid environment.

• The bacterial foraging optimisation algorithm is improved and applied in USV global path
planning under the grid environment.

• The cost function of the A* algorithm is integrated into the tumble motion, which solves the
problem of repairing a discontinuous path.

• The relative optimal parameter combination is obtained and it makes the AS-BFO algorithm run
effectively in different working environments.

where mod(.) is the remainder operation and ceil(·) rounds an element to the nearest integer towards
positive infinity. As mentioned above, the goal of path planning is to find an ordered grid with the
shortest distance among feasible ordered grids.

2 The electronic chart is a digital chart that is a type of map model for USV global path planning.
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3.1. Coding method
The population described in this paper consists of a limited number of bacteria. Each bacterium is con-
nected by a series of nodes. One bacterium represents a feasible path. It should be noted that, owing to
the randomly generated paths being composed of different numbers of nodes, the lengths of the paths
are not uniform. Therefore, variable length bacteria are used to represent individuals. Figure 2 shows a
path and its corresponding bacterium.

Figure 2. A feasible path

This paper defines the chemotaxis operation of BFO in the grid environment. Chemotaxis in traditional
BFO means that any nodes will tumble and swim in any direction. However, some tumbling motions
can result in discontinuous paths in the grid environment. Therefore, AS-BFO improves the chemotaxis
operator. Firstly, it judges whether the tumbled nodes are continuous with the previous and the following
nodes. Then, the discontinuous paths are repaired using the A* algorithm.

Monitoring is a targeted search for in-depth information on the development of previ-
ously identified indicators for the future environment that are potentially relevant for
the company’s own process and system development. By systematic and continuous
observation of selected indicators during development, monitoring enables the early,
cross-generational recognition of changes in future development and thus supports the
definition and introduction of suitable actions.

Currently, monitoring is mainly used to update company strategies. However, it is useful to make it avail-
able for the cross-generational product development approach to make the process agile and adaptive.
Boundary conditions, objectives and requirements are often uncertain and vague in the early stages. The
closer the product comes to market launch, the clearer but also more restrictive these become. Monitoring
should be used to identify and take account of changes as early as possible. This should involve a two-
way networking of the information flow with feedback between the boundary conditions and premises
derived from the foresight and the solutions being developed for the various product generations to check
their validity. This requires the definition of indicators that enable targeted and comprehensible monitor-
ing of individual aspects for all generations in different stages of a product. These are defined within the
activity scanning and could be, for example, changed trends or adapted laws that significantly influence
a specific product characteristic. If a change with an impact on the underlying environment, technology
or product scenarios is identified at a certain time, it is necessary to assess whether this has a relevant
impact on the properties and design of the product generations currently under development. If this is the
case, its extent must be assessed and the various options for action must be weighed up for a decision.
A decision could also be to launch the next generation as planned as changes would take too much time
to implement but consider the new information to adapt further generations that are already in devel-
opment. When the chemotaxis operator is performed, the following situations are possible. Firstly, after
the node is tumbled, the tumbled node is continuous with its previous and following nodes, as shown
in Figure 3. These can be trends, prognoses or laws, for example, which must be linked to the product
properties. Trend radars, the development of certain competitors’ products, technological developments
and social debates on specific topics are possible points of reference. The initial search is undirected
but may be based on the underlying scenarios. In strategic foresight, there exist approaches and meth-
ods If n2 is a tumble node, it can be randomly tumbled to the adjacent free grids. Taking Figure 3 as an
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example, n2 tumbles to n′2. Then, according to Equation (4), it is judged whether n1 and n′2, n′2 and n3
are, respectively, continuous. If ∆ = 1, then n1 and n′2, n′2 and n3 are continuous; otherwise, they are not:

Figure 3. Schematic diagram of continuous nodes

Here (xtumbled ,ytumbled) are the horizontal and vertical coordinates of the tumbled node (n′2) and (x,y)
are the horizontal and vertical coordinates of the previous or the following node (n1,n3). The path after
the tumble motion is marked by the red line.
Secondly, it is discontinuous with the previous or the following node, when the node is tumbled. As
shown in Figure 4(a), n2 is used as the tumble node. So n2 is tumbled to n′2, and then it is judged whether
n1 and n′2, n′2 and n3 are, respectively, continuous. It can be observed that n′2 and n3 are continuous;
however, n′2 and n1 are not continuous. At this time, the evaluation function of the A* algorithm is applied
to the tumble motion, and the problem of repairing the discontinuous path has been solved. Figure 4(b)
shows that there are many repaired nodes around n′2(x,y), and the yellow nodes are repaired nodes.

(a) (b)

Figure 4. Schematic diagram of discontinuous nodes. (a) Intermittent path, (b) Patching path

A repaired node will be selected depending on Equations (5)–(7):
Fmin = G + H, (3)

G =
√

(x′tumbled − x′′tumbled)
2 + (y′tumbled − y′′tumbled)

2, (4)

H =
√

(x − x′′tumbled)
2 + (y − y′′tumbled)

2. (5)

Here (x,y) represents the coordinates of the previous node, (x′tumbled,y
′
tumbled) denotes the coordinates of

a node after it has been tumbled, and (x′′tumbled,y
′′
tumbled) indicates the coordinates of the repair nodes. As

shown in Figure 4(b), we use (x′′n2
,y′′n2

) as the coordinates of the repaired node. When the discontinuous
path is repaired, it is represented by the red line. Although the path increases slightly, this method solves
the problem that the path is discontinuous after the node is tumbled.
This paper introduces a novel methodology for analyzing the spatial distribution and co-presence of
objects within home interiors utilizing graphs. This approach entails constructing a graph where nodes
represent individual objects, such as furniture or decor, and edges denote these objects’ co-presence or
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relational adjacency within a given space, such as a specific function of an entire home. The weight of
each edge corresponds to the frequency or significance of the co-presence of the connected objects. This
method facilitates an analysis of object-to-object relationships and their centrality within the domestic
environment. A quantified domestic activities trend is enabled where traditionally invested based on the
attributes of the physical environment, such as size, connectivity, and layout of the homes. In this graph,
unique object pairs are extracted to ensure no repetition of objects within a single graph representation.
Finally, the tumbled node is discontinuous with the previous node and the following node after the node
is tumbled. Then, the repaired point can be found by Equations (5)–(7) so that the path is continuous.
Note that we need to use the evaluation function of the A* algorithm twice in this condition. The method
to deal with discontinuity with the previous and the following nodes is the same as the above method.
Therefore, an effective method to repair discontinuous paths is proposed, which ensures that each tumble
can be performed efficiently.

3.1.1. Reproduction
When the chemotaxis operation is completed, the path length represented by each bacterium is sorted.
The half of the bacteria with longer paths are eliminated, and the half of the bacteria with shorter paths
are reproduced. Thus, bacteria number is kept unchanged.

3.1.2. Elimination–dispersal
When the reproduction operation is completed, a random probability Pr is generated and compared with
the fixed migration probability Ped . If Pr < Ped , the bacterium is dispersed. This operation can reduce the
possibility of bacteria falling into a local optimal solution. It can also be a good solution for maintaining
diversity.

3.2. Algorithm description
In this algorithm, the path optimisation problem is encoded. One feasible path represents one bacterium.
The initial population is usually randomly generated without infeasible paths, which can reduce the
blindness of initial population generation. Among the three main operators in the algorithm, the chemo-
taxis operator can improve the local search accuracy of bacteria, the reproduction operator can increase
the convergence performance of bacteria, and the elimination–dispersal operator can increase the diver-
sity of solutions. The parameters of AS-BFO are tightly coupled. The selection of the parameters directly
affects the performance of the algorithm. At present, there is no perfect theoretical basis to determine the
optimal combination parameters. The traditional method is repeated trials to obtain the relative optimal
combination of parameters.

4. Analysis of results
It is very important for the application of AS-BFO in practical problems to study the parameters of
population size, chemotaxis number, replications number and elimination–dispersal number. However,
the setting of the parameters mainly depends on the statistical data and simulation experiment. This paper
studies the path planning in two different environments, in which the islands represent the obstacles.

4.1. Experiment 1
Different parameter settings may lead to different performances. In this experiment, different parame-
ters are applied in the proposed method, in order to compare the performances generated by different
parameter settings.

4.1.1. Population number
In this experiment, the chemotaxis number Nc = 5, reproduction number Nre = 2 and elimination–
dispersal number Ned = 2 are fixed, and the population number P is selected to be 10, 20, 30, 40, 50,
60, 70 and 80, respectively. The results show that the greater the number of bacteria, the faster the
convergence rate.
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4.1.2. Chemotaxis number
The chemotaxis operator is an important operator of AS-BFO, and the chemotaxis number directly
affects the local optimisation ability of the algorithm. In this simulation experiment, P = 50, Nre = 2 and
Ned = 2 are fixed, and the chemotaxis number is set to Nc = 1, 2, 3, 4, 5, 6, 7 and 8. For environment 1,
when Nc = 7, the path is the shortest. When Nc = 8, the number of iterations is the least. For environment
2, when Nc = 8, the path is the shortest. When Nc = 6, the number of iterations is the least.

4.1.3. Reproduction number
The reproduction operator reduces population diversity and increases the convergence rate of the algo-
rithm. In the simulation experiment, P = 50, Nc = 5 and Ned = 2 are fixed, and the reproduction number
is set to Nre = 1, 2, 3, 4 and 5. For environment 1, when Nre = 5, the path is the shortest. When Nre = 4,
the number of iterations is the least. For environment 2, when Nre = 2, the path is the shortest. When
Nre = 5, the number of iterations is the least.

4.1.4. Elimination–dispersal number
The elimination–dispersal operator is designed to improve global optimisation and maintain the diversity
of solutions. As the outermost nesting of the algorithm, the elimination–dispersal number directly affects
the algorithm running time. In the simulation experiment, P = 50, Nc = 5 and Nre = 2 are fixed, and
reproduction number varies as Ned = 1, 2, 3, 4 and 5. For environment 1, when Ned = 3, the path is
the shortest. When Ned = 5, the number of iterations is the least. For environment 2, when Ned = 4,
the path is the shortest. When Ned = 4, the number of iterations is the least. There are four uncertain
parameters, population number P, chemotaxis number Nc, reproduction number Nre and elimination–
dispersal number Ned , involved in the proposed model. Table 1 shows the sampling ranges of each
parameter during the sampling processes of the Morris method. As demonstrated above, different values

Table 1. Sampling range of each parameter

Parameter Range

Population number (P) P ∼ (10,100)
Chemotaxis number (Nc) Nc ∼ (2,12)
Reproduction number (Nre) Nre ∼ (1,8)
Elimination–dispersal number (Ned) Ned ∼ (1,10)

of parameters lead to completely different results. The most influential parameters are identified by
sensitivity analysis (SA), as well as to understand their impact on the model output. For this reason, the
Morris method (Cadero et al., 2018) is applied to develop the parameter sensitivity analysis. Briefly, the
Morris method involves the generation of uncertain parameter samples via a trajectory-based sampling
process. The method calculates and evaluates the standard deviation σi of the elementary effects µi,
where i is the ith date sample, over r repetitions to assess the factors’ importance. A high value of µi
indicates a high linear effect for a given factor, while a high value of σi represents either nonlinear or
non-additive factor behaviour. The importance of input factors of the model can often be assessed by
plotting the factors (µ∗,σ ), where µ∗ is the mean of µi in two-dimensional space. The factors closest to
the origin are less influential.
Preliminary conversations with stakeholders in Trondheim highlighted that the context of work migrants
in the building and construction industry is not completely understood or clearly communicated, which
makes it difficult to propose new strategies to combat modern slavery and inadequate work and hous-
ing conditions. The comprehensive representation of stakeholders was unclear, and there is no regional
policy for providing inclusive housing for work migrants, even though the city has established inclusive
housing strategies specifically for refugees. Our aspiration was that design could help illustrate the full
picture, identify new areas of intervention, and see new possible connections that can propose a new
future of how to regard housing for work migrants in the city.
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4.2. Parameter sensitivity analysis
In this experiment, the Morris method runs a model with five factors along four trajectories, and a total
of 20 samples have been extracted, as listed in Table 2. Each generated data sample is applied as the
input to the proposed method 10 times to get an average optimal path length. According to the Morris
method, the corresponding standard deviation σ and its elementary effects µ for each trajectory can
be calculated, shows the sensitivity of each parameter in the environmental map of different sizes. In
addition, the (µ∗,σ ) is also plotted in a two-dimensional plot, for parameter importance analysis. It
is clear that parameter 3 (Nre) and parameter 4 (Ned) are away from the origin, which indicates that
those parameters are the most important. Within several stages of the framework, the interpretation of
multiple data streams in mixed formats is pivotal. The effectiveness of this will rely on the ability to
interpret the data streams, which will rely on the expertise at hand, the computational resource available,
data storage facilities, the data stream quality, applicability, and suitability to the problem amongst other
factors. This also plays into the balancing of a mixed-method approach. As illustrated in Section 4,
the quantification of human preferences could potentially remove the nuances, and the incorporation of
qualitative feedback in a computational space is challenging.

Table 2. Extracted samples

Factor Trajectory 1
(P,Nc,Nre,Ned)

Trajectory 2
(P,Nc,Nre,Ned)

Trajectory 3
(P,Nc,Nre,Ned)

Trajectory 4
(P,Nc,Nre,Ned)

1 (63,2,3,7) (100,2,8,3) (10,5,6,10) (30,2,1,10)
2 (63,5,3,7) (100,9,8,3) (10,2,6,10) (30,5,1,10)
3 (30,5,3,7) (100,9,8,7) (10,2,6,1) (63,5,1,10)
4 (30,5,3,1) (10,9,8,7) (30,2,6,1) (63,5,6,10)
5 (30,5,1,1) (10,9,6,7) (30,2,8,1) (63,5,6,3)

The performance of the proposed method is evaluated and validated in this section. Generally speaking,
GA and ACO are adopted to against the proposed approach. Likewise, we first obtain the relative opti-
mal parameters of ACO and GA through repeated experiments in the S3 environment, and then apply
the parameters to other environments. In order to evaluate the performance of each method under dif-
ferent environments, the simulated environments, are grid partitioned into five different size, denoted
as: S1, 10 × 10; S2, 15 × 15; S3, 20 × 20; S4, 25 × 25; and S5, 30 × 30. Each size is considered as an
individual scenario. In each environment, the ratio of the obstacle area to the entire map area is approx-
imately equal. The experimental results of three approaches under five different sizes are listed shows
the relative optimal paths of the two environments in the five size maps.
From Table 1, we can see that the AS-BFO has a better average path length using a very small iteration
number. Moreover, the maximum path length obtained by AS-BFO is less than ACO and GA in the 20
repeated experiments. In S1, S2 and S3, AS-BFO’s AIN has a great advantage. However, the advantages
in MaxPL, MinPL and APL are not obvious. In S4, the advantage of AS-BFO’s AIN is still obvious.
It is worth noting that AS-BFO’s MaxPL is 24.39 (32.04) smaller than ACO and 6.83 (5.07) smaller
than GA. AS-BFO’s MinPL is 6 (14.49) smaller than ACO and 1.76 (0.59) smaller than GA. In S5, the
advantages of MinPL’s AIN are equally obvious. AS-BFO’s MaxPL is 76.67 (53.01) smaller than ACO
and 17.66 (12) smaller than GA. The MinPL of AS-BFO is 40.39 (57.93) smaller than ACO and 3.76
(2.58) smaller than GA. Analysis shows that the larger the map size L, the greater the advantage of AS-
BFO. Therefore, AS-BFO is superior to GA and ACO in searching efficiency and obtaining an optimal
solution.

5. Conclusions
This paper proposes a more efficient path planning method based on the AS-BFO algorithm. The effects
of bacteria number, chemotaxis number, reproduction number and elimination–dispersal number on the
global path planning are analysed. Through experimental analysis, bacteria number is inversely pro-
portional to the path length. The greater the chemotaxis number, the stronger is the local optimisation
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ability of the algorithm. Correspondingly, the path length and iteration number will decrease. However,
the greater the reproduction number, the smaller the diversity of the population and the faster the con-
vergence of the algorithm. The experiments indicate that the increase of elimination–dispersal number
will decrease both the path length and iteration number within a certain range. It can be found from the
comparison of algorithms that AS-BFO performs better than comparative algorithms in terms of aver-
age iteration number, average path, maximum path and minimum path. A parameter sensitivity analysis
shows that the effects between the various parameters and the effect of each parameter on the output are
different in different environmental maps.
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Appendix A
AS-BFO’s MaxPL is 76.67 (53.01) smaller than ACO and 17.66 (12) smaller than GA. The MinPL of
AS-BFO is 40.39 (57.93) smaller than ACO and 3.76 (2.58) smaller than GA. Analysis shows that the
larger the map size L, the greater the advantage of AS-BFO. Therefore, AS-BFO is superior to GA and
ACO in searching efficiency and obtaining an optimal solution.
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